Skip to main content
Log in

All-passive optical diode using living liquid crystal doped with silver nanorods

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Some industrial uses of living cells involve genetic engineering or modification of cell’s external properties. However, these techniques commonly have high financial costs, do not take advantage of the natural properties of the cells, and have few applications in the photonics area. As the first technological application of living liquid crystals, we propose an all-passive optical diode using Bacillus subtilis, chromonic liquid crystal, and silver nanorods. These three elements comprise a living liquid crystal doped with nanorods that produces a spatial inversion asymmetric system, facilitating the passage of light in one direction and hampering it in the opposite one. Solving Maxwell’s equation numerically for this system, we found optical rectification for light’s intensity up to \(1700\%\). Such diodes can be the primary units for an all-passive optical film and other nonreciprocal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Geng, L. Wang, N. Jiang, J. Cao, Y.X. Xiao, H. Wei, A.K. Yetisen, X.Y. Yang, B.L. Su, Single cells in nanoshells for the functionalization of living cells. Nanoscale 10(7), 3112 (2018). https://doi.org/10.1039/C7NR08556G

    Article  Google Scholar 

  2. Yun Jung Lee, Hyunjung Yi, Woo-Jae Kim, Kisuk Kang, Dong Soo Yun, Michael S. Strano, Gerbrand Ceder, A.M. Belcher, Y.J. Lee, H. Yi, W.J. Kim, K. Kang, D.S. Yun, M.S. Strano, G. Ceder, A.M. Belcher, Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324(5930), 1051 (2009). https://doi.org/10.1126/science.1171541

    Article  ADS  Google Scholar 

  3. S. Toda, L.R. Blauch, S.K. Tang, L. Morsut, W.A. Lim, Programming self-organizing multicellular structures with synthetic cell-cell signaling. Science 361(6398), 156 (2018)

    ADS  Google Scholar 

  4. E.M. Andre, C. Passirani, B. Seijo, A. Sanchez, C.N. Montero-Menei, Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: application to Huntington’s disease. Biomaterials 83, 347 (2016)

    Article  Google Scholar 

  5. N. Jiang, G.L. Ying, S.Y. Liu, L. Shen, J. Hu, L.J. Dai, X.Y. Yang, G. Tian, B.L. Su, Amino acid-based biohybrids for nano-shellization of individual desulfurizing bacteria. Chem. Commun. 50(97), 15407 (2014)

    Article  Google Scholar 

  6. S. Zhou, A. Sokolov, O.D. Lavrentovich, I.S. Aranson, Living liquid crystals. Proc. Natl. Acad. Sci. 111(4), 1265 (2014)

    Article  ADS  Google Scholar 

  7. P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (CRC Press, 2005)

  8. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Claredon Press, Oxford, 1992)

    Google Scholar 

  9. D.K. Yang, S.T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, New Jersey, 2006)

    Book  Google Scholar 

  10. M. Kleman, O.D. Lavrentovich, Soft Matter Physics: an Introduction (Springer-Verlag, New York, 2003)

    Google Scholar 

  11. S. Fumeron, E. Pereira, F. Moraes, Modeling heat conduction in the presence of a dislocation. Int. J. Therm. Sci. (2013). https://doi.org/10.1016/j.ijthermalsci.2012.12.013

    Article  Google Scholar 

  12. S. Fumeron, E. Pereira, F. Moraes, Principles of thermal design with nematic liquid crystals. Phys. Rev. E 89(2), 20501 (2014). https://doi.org/10.1103/PhysRevE.89.020501

    Article  ADS  Google Scholar 

  13. J.G. Silva, S. Fumeron, F. Moraes, E. Pereira, High Thermal Rectifications Using Liquid Crystals Confined into a Conical Frustum. Brazi. J. Phys. 48(4), 315 (2018). https://doi.org/10.1007/s13538-018-0557-9

    Article  ADS  Google Scholar 

  14. S.J. Santos Jr., J. Andrade, E. Pereira, Simultaneous rectification of heat and light using liquid crystal. J. Appl. Phys. 124(9), 94501 (2018). https://doi.org/10.1063/1.5045586

    Article  Google Scholar 

  15. W.K.P. Barros, E. Pereira, Concurrent guiding of light and heat by transformation optics and transformation thermodynamics via soft matter. Sci. Rep. 8(1), 11453 (2018). https://doi.org/10.1038/s41598-018-29866-w

    Article  ADS  Google Scholar 

  16. E. Pereira, S. Fumeron, F. Moraes, Metric approach for sound propagation in nematic liquid crystals. Phys. Rev. E 87(2), 22506 (2013)

    Article  ADS  Google Scholar 

  17. E. Viana, F. Moraes, S. Fumeron, E. Pereira, High rectification in a broadband subwavelength acoustic device using liquid crystals. J. Appl. Phys. 125(20), 204503 (2019)

    Article  ADS  Google Scholar 

  18. E. Pereira, F. Moraes, Diffraction of light by topological defects in liquid crystals. Liq. Cryst. 38, 295 (2011)

    Article  Google Scholar 

  19. E.R. Pereira, F. Moraes, Flowing liquid crystal simulating the schwarzschild metric. Cent. Eur. J. Phys. 9, 1100 (2011)

    Google Scholar 

  20. S. Fumeron, E. Pereira, F. Moraes, Generation of optical vorticity from topological defects. Phys. B 476, 19 (2015). https://doi.org/10.1016/j.physb.2015.07.010

    Article  ADS  Google Scholar 

  21. S. Fumeron, F. Moraes, E. Pereira, Retrieving the saddle-splay elastic constant K24 of nematic liquid crystals from an algebraic approach. Eur. Phys. J. E 39(9), 83 (2016). https://doi.org/10.1140/epje/i2016-16083-8

    Article  Google Scholar 

  22. H.S. Park, S.W. Kang, L. Tortora, Y. Nastishin, D. Finotello, S. Kumar, O.D. Lavrentovich, Self-assembly of lyotropic chromonic liquid crystal sunset yellow and effects of ionic additives. J. Phys. Chem. B 112(51), 16307 (2008)

    Article  Google Scholar 

  23. M.J. Bowick, L. Chandar, E.A. Schiff, A.M. Srivastava, The cosmological Kibble mechanism in the laboratory: string formation in liquid crystals. Science 263, 943 (1994)

    Article  ADS  Google Scholar 

  24. R.A. Puntigam, H.H. Soleng, Volterra distortions, spinning strings, and cosmic defects. Class. Quantum Grav. 14, 1129 (1997)

    Article  ADS  Google Scholar 

  25. S. Fumeron, B. Berche, F. Moraes, F. Santos, E. Pereira, Geometrical optics limit of phonon transport in a channel of disclinations. Eur. Phys. J. B (2017). https://doi.org/10.1140/epjb/e2017-70384-5

    Article  Google Scholar 

  26. G.P. Crawford, D.W. Allender, J.W. Doane, Surface elastic and molecular-anchoring properties of nematic liquid crystals confined to cylindrical cavities. Phys. Rev. A 45(12), 8693 (1992)

    Article  ADS  Google Scholar 

  27. R. Kemkemer, D. Kling, D. Kaufmann, H. Gruler, Elastic properties of nematoid arrangements formed by amoeboid cells. Eur. Phys. J. E 1(2), 215 (2000). https://doi.org/10.1007/s101890050024

    Article  Google Scholar 

  28. S. Zhou, K. Neupane, Y.A. Nastishin, A.R. Baldwin, S.V. Shiyanovskii, O.D. Lavrentovich, S. Sprunt, Elasticity{,} viscosity{,} and orientational fluctuations of a lyotropic chromonic nematic liquid crystal disodium cromoglycate. Soft Matter 10(34), 6571 (2014). https://doi.org/10.1039/C4SM00772G

    Article  ADS  Google Scholar 

  29. G.J. Evans, J.K. Moscicki, M.W. Evans, The poley absorption in liquid crystals. J. Mol. Liq. 32(2), 149 (1986)

    Article  Google Scholar 

  30. T.J. Johnson, N.B. Valentine, S.W. Sharpe, Mid-infrared versus far-infrared (thz) relative intensities of room-temperature bacillus spores. Chem. Phys. Lett. 403(1–3), 152 (2005)

    Article  ADS  Google Scholar 

  31. C.W. Chang, D. Okawa, A. Majumdar, A. Zettl, Solid-state thermal rectifier. Science 314(5802), 1121 (2006)

    Article  ADS  Google Scholar 

  32. D.B. Dupré, F.M. Lin, Measurement of the an isotropic refractive indices of polybenzylglutamate liquid crystals. Mol. Factors Dispers. Mol. Cryst. Liq. Cryst. 75(1), 217 (1981)

    Article  Google Scholar 

  33. H. Mattoussi, M. Srinivasarao, P.G. Kaatz, G.C. Berry, Refractive indexes dispersion and order of lyotropic liquid crystal polymers. Macromolecules 25(11), 2860 (1992)

    Article  ADS  Google Scholar 

  34. N. Li, H. Yin, X. Zhuo, B. Yang, X.M. Zhu, J. Wang, Infrared-responsive colloidal silver nanorods for surface-enhanced infrared absorption. Adv. Opt. Mater. 6(17), 1800436 (2018)

    Article  Google Scholar 

  35. J. Xiang, O.D. Lavrentovich, Liquid crystal structures for transformation optics. Mol. Cryst. Liq. Cryst. 559(1), 106 (2012)

    Article  Google Scholar 

  36. A.K. Ojha, S. Forster, S. Kumar, S. Vats, S. Negi, I. Fischer, Synthesis of well-dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains. J. Nanobiotechnol. 11(1), 42 (2013)

    Article  Google Scholar 

  37. L. Fan, J. Wang, L.T. Varghese, H. Shen, B. Niu, Y. Xuan, A.M. Weiner, M. Qi, An all-silicon passive optical diode. Science 335(6067), 447 (2012)

    Article  ADS  Google Scholar 

  38. H. Zhou, K.F. Zhou, W. Hu, Q. Guo, S. Lan, X.S. Lin, A. Venu Gopal, All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs. J. Appl. Phys. 99(12), 123111 (2006)

    Article  ADS  Google Scholar 

  39. R. Philip, M. Anija, C.S. Yelleswarapu, D. Rao, Passive all-optical diode using asymmetric nonlinear absorption. Appl. Phys. Lett. 91(14), 141118 (2007)

    Article  ADS  Google Scholar 

  40. S. Ramaswamy, The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1(1), 323 (2010)

    Article  ADS  Google Scholar 

  41. J. Li, S. Gauza, S.T. Wu, Temperature effect on liquid crystal refractive indices. J. Appl. Phys. 96(1), 19 (2004)

    Article  ADS  Google Scholar 

  42. Y.A. Nastishin, H. Liu, T. Schneider, V. Nazarenko, R. Vasyuta, S. Shiyanovskii, O. Lavrentovich, Optical characterization of the nematic lyotropic chromonic liquid crystals: Light absorption, birefringence, and scalar order parameter. Phys. Rev. E 72(4), 041711 (2005)

    Article  ADS  Google Scholar 

  43. M.D. Tocci, M.J. Bloemer, M. Scalora, J.P. Dowling, C.M. Bowden, Thin-film nonlinear optical diode. Appl. Phys. Lett. 66(18), 2324 (1995)

    Article  ADS  Google Scholar 

  44. M. Scalora, J.P. Dowling, C.M. Bowden, M.J. Bloemer, The photonic band edge optical diode. J. Appl. Phys. 76(4), 2023 (1994)

    Article  ADS  Google Scholar 

  45. D.W. Wang, H.T. Zhou, M.J. Guo, J.X. Zhang, J. Evers, S.Y. Zhu, Optical diode made from a moving photonic crystal. Phys. Rev. Lett. 110(9), 93901 (2013)

    Article  ADS  Google Scholar 

  46. K. Gallo, G. Assanto, K.R. Parameswaran, M.M. Fejer, All-optical diode in a periodically poled lithium niobate waveguide. Appl. Phys. Lett. 79(3), 314 (2001)

    Article  ADS  Google Scholar 

  47. V. Liu, D.A. Miller, S. Fan, Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect. Opt. Express 20(27), 28388 (2012)

    Article  ADS  Google Scholar 

  48. A. Khavasi, M. Rezaei, A.P. Fard, K. Mehrany, A heuristic approach to the realization of the wide-band optical diode effect in photonic crystal waveguides. J. Opt. 15(7), 075501 (2013)

    Article  ADS  Google Scholar 

  49. H.A. Ragheb, A. Sebak, L. Shafai, Cutoff frequencies of circular waveguide loaded with eccentric dielectric cylinder. IEE Proc. Microw. Antennas Propag. 144(1), 7 (1997)

    Article  Google Scholar 

  50. F. Vatansever, M.R. Hamblin, Far infrared radiation (fir): its biological effects and medical applications. Photon. Lasers Med. 1(4), 255 (2012)

    Google Scholar 

  51. Y. Cai, Z. Liu, H. Wang, X. Sun, Saliency-based pedestrian detection in far infrared images. IEEE Access 5, 5013 (2017)

    Google Scholar 

Download references

Acknowledgements

From Brazil, the authors thank the National Council for Scientific and Technological Development (CNPq – 465259/2014-6), the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Institute of Science and Technology Complex Fluids (INCT-FCx), and the São Paulo Research Foundation (FAPESP – 2014/50983-3). The datasets generated during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

RASF supervised the content about the pathological effects of the silver nanorods on the living cells. PFGS and EHSV built the theoretical model and performed numerical simulations. All the authors wrote the manuscript, analyzed the data, and contributed to the discussion. EP conceived the idea, built the theoretical model, designed the simulation, and supervised the project.

Corresponding author

Correspondence to Erms Pereira.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, P.F.G., Viana, E.H.S., Fonseca, R.A.S. et al. All-passive optical diode using living liquid crystal doped with silver nanorods. Appl. Phys. B 126, 115 (2020). https://doi.org/10.1007/s00340-020-07460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07460-1

Navigation