Skip to main content
Log in

The phase interrogation method for optical fiber sensor by analyzing the fork interference pattern

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The phase interrogation method for optical fiber sensor is proposed based on the fork interference pattern between the orbital angular momentum beam and plane wave. The variation of interference pattern with phase difference between the two light beams is investigated to realize the phase interrogation. By employing principal component analysis method, the features of the interference pattern can be extracted. Moreover, the experimental system is designed to verify the theoretical analysis, as well as feasibility of phase interrogation. In this work, the Mach–Zehnder interferometer was employed to convert the strain applied on sensing fiber to the phase difference between the reference and measuring paths. This interrogation method is also applicable for the measurements of other physical parameters, which can produce the phase delay in optical fiber. The performance of the system can be further improved by employing highlysensitive materials and fiber structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Li, L. Jiang, S. Wang, H.L. Tsai, H. Xiao, Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing. Opt. Laser Technol. 43(8), 1420–1423 (2011)

    Article  ADS  Google Scholar 

  2. Y. Zhao, R. Lv, Y. Ying, Q. Wang, Hollow-core photonic crystal fiber Fabry-Perot sensor for magnetic field measurement based on magnetic fluid, Opt. Laser Technol. 44(4), 899–902 (2012)

    Article  ADS  Google Scholar 

  3. D.W. Duan, Y.J. Rao, Y.S. Hou et al., Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement. Appl. Opt. 51(8), 1033 (2012)

    Article  ADS  Google Scholar 

  4. S.M. Lee, S.S. Saini, M.Y. Jeong, Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber bragg grating, Sens. IEEE Photon. Technol. Lett. 22(19), 1431–1433 (2010)

    Article  ADS  Google Scholar 

  5. W. Li, C. Xu, S. Ho et al., Monitoring concrete deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements. Sensors 17, 657 (2017)

    Article  Google Scholar 

  6. K.K. Qureshi, Z. Liu, H.Y. Tam et al., A strain sensor based on in-line fiber Mach–Zehnder interferometer in twin-core photonic crystal fiber. Opt. Commun. 309(22), 68–70 (2013)

    Article  ADS  Google Scholar 

  7. S. Li, Q. Mo, X. Hu et al., Controllable all-fiber orbital angular momentum mode converter. Opt. Lett. 40(18), 4376–4379 (2015)

    Article  ADS  Google Scholar 

  8. A.M. Yao, M.J. Padgett, Adv. Opt. Photon. 3, 161 (2011)

    Article  Google Scholar 

  9. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A. 45, 8185 (1992)

    Article  ADS  Google Scholar 

  10. M. Padgett, R. Bowman, Tweezers with a twist. Nat. Photon. 5(6), 343–348 (2011)

    Article  ADS  Google Scholar 

  11. D.G. Grier, A revolution in optical manipulation. Nature 424(6950), 810–816 (2003)

    Article  ADS  Google Scholar 

  12. J. Wang, J. Yang, I.M. Frazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6(7), 488–496 (2012)

    Article  ADS  Google Scholar 

  13. L. Qiu, H. Hu, Y. Zhao et al., Fiber optic temperature sensor using the orbital angular momentum and gaussian beams. Instrum. Sci. Technol. 45(2), 123–136 (2017)

    Article  Google Scholar 

  14. M. Turk, A. Pentland, Eigenfaces for Recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  15. S. Ramachandran, P. Kristensen, M.F. Yan, Opt. Lett. 34, 2525 (2009)

    Article  ADS  Google Scholar 

  16. Y. Yan, L. Zhang, J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, A.E. Willner, S.J. Dolinar, Opt. Lett. 37, 3294 (2012)

    Article  ADS  Google Scholar 

  17. Y. Li, L. Jin, H. Wu et al., Superposing multiple LP modes with microphase difference distributed along fiber to generate OAM mode. IEEE Photon. J. 9(2), 1–9 (2017)

    Google Scholar 

  18. D. C. Ghiglia, M. D. Pritt, Two-dimensional phase unwrapping theory, algorithms and applications (Wiley, New York, 1998)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Nature Science Foundation of China (NSFC) (61403074) and the Fundamental Research Funds for the Central Universities (N160404002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, R., Qiu, L., Hu, H. et al. The phase interrogation method for optical fiber sensor by analyzing the fork interference pattern. Appl. Phys. B 124, 32 (2018). https://doi.org/10.1007/s00340-018-6901-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6901-5

Navigation