Skip to main content
Log in

Laser ablation production of Ba, Ca, Dy, Er, La, Lu, and Yb ions

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We use a pulsed nitrogen laser to produce atomic ions by laser ablation, measuring the relative ion yield for several elements, including some that have only recently been proposed for use in cold trapped ion experiments. For barium, we monitor the ion yield as a function of the number of applied ablation pulses for different substrates. We also investigate the ion production as a function of the pulse energy, and the efficiency of loading an ion trap as a function of radiofrequency voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Although the nitrogen laser profile shows considerable non-gaussian structure, we approximate it as a gaussian profile for the beam calculations presented.

  2. All three grids use a \(72\times 72\) stainless steel mesh with 0.0037-inch diameter wire (McMaster-Carr, 9230T66), mounted across a 0.5-inch diameter hole in a stainless steel plate.

  3. Possible mass-dependent variation in the CEM detection efficiency [43] is not included in the ion yield calculation.

References

  1. A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P. Schmidt, Rev. Mod. Phys. 87, 637 (2015). doi:10.1103/RevModPhys.87.637

    Article  ADS  Google Scholar 

  2. A. Härter, J. Hecker Denschlag, Contemp. Phys. 55, 33 (2014). doi:10.1080/00107514.2013.854618

    Article  ADS  Google Scholar 

  3. J.P. Karr, J. Phys. B 42, 154018 (2009). doi:10.1088/0953-4075/42/15/154018

    Article  ADS  Google Scholar 

  4. C. Orzel, Phys. Scr. 86, 068101 (2012). doi:10.1088/0031-8949/86/06/068101

    Article  ADS  Google Scholar 

  5. C. Monroe, J. Kim, Science 339, 1164 (2013). doi:10.1126/science.1231298

    Article  ADS  Google Scholar 

  6. P.D.D. Schwindt, Y.Y. Jau, H. Partner, A. Casias, A.R. Wagner, M. Moorman, R.P. Manginell, J.R. Kellogg, J.D. Prestage, Rev. Sci. Inst. 87, 053112 (2016). doi:10.1063/1.4948739

    Article  ADS  Google Scholar 

  7. D. De Motte, A.R. Grounds, M. Rehák, A. Rodriguez Blanco, B. Lekitsch, G.S. Giri, P. Neilinger, G. Oelsner, E. Il’ichev, M. Grajcar, W.K. Hensinger, Quantum Inf. Proc. 15, 5385 (2016). doi:10.1007/s11128-016-1368-y

  8. M.F. Brandl, M.W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R.R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U.G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, R. Blatt, Rev. Sci. Inst. 87, 113103 (2016). doi:10.1063/1.4966970

    Article  ADS  Google Scholar 

  9. H.G. Dehmelt, Adv. At. Mol. Phys. 3, 53 (1967). doi:10.1016/S0065-2199(08)60170-0

    Article  ADS  Google Scholar 

  10. N. Kjaergaard, L. Hornekaer, A.M. Thommesen, Z. Videsen, M. Drewsen, Appl. Phys. B 71, 207 (2000). doi:10.1007/s003400000296

    Article  ADS  Google Scholar 

  11. S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, W. Hogervorst, Appl. Phys. B 73, 861 (2001). doi:10.1007/s003400100749

    Article  ADS  Google Scholar 

  12. D.M. Lucas, A. Ramos, J.P. Home, M.J. McDonnell, S. Nakayama, J. Stacey, S.C. Webster, D.N. Stacey, A.M. Steane, Phys. Rev. A 69, 012711 (2004). doi:10.1103/PhysRevA.69.012711

    Article  ADS  Google Scholar 

  13. U. Tanaka, H. Matsunishi, I. Morita, S. Urabe, Appl. Phys. B 81, 795 (2005). doi:10.1007/s00340-005-1967-2

    Article  ADS  Google Scholar 

  14. L. Deslauriers, M. Acton, B.B. Blinov, K. Brickman, P.C. Haljan, W.K. Hensinger, D. Hucul, S. Katnik, R.N. Kohn Jr., P.J. Lee, M.J. Madsen, P. Maunz, S. Olmschenk, D.L. Moehring, D. Stick, J. Sterk, M. Yeo, K.C. Younge, C. Monroe, Phys. Rev. A 74, 063421 (2006). doi:10.1103/PhysRevA.74.063421

    Article  ADS  Google Scholar 

  15. M. Brownnutt, V. Letchumanan, G. Wilpers, R. Thompson, P. Gill, A. Sinclair, Appl. Phys. B 87, 411 (2007). doi:10.1007/s00340-007-2624-8

    Article  ADS  Google Scholar 

  16. A.V. Steele, L.R. Churchill, P.F. Griffin, M.S. Chapman, Phys. Rev. A 75, 053404 (2007). doi:10.1103/PhysRevA.75.053404

    Article  ADS  Google Scholar 

  17. B. Wang, J.W. Zhang, C. Gao, L.J. Wang, Opt. Express 19, 16438 (2011). doi:10.1364/OE.19.016438

    Article  ADS  Google Scholar 

  18. M. Johanning, A. Braun, D. Eiteneuer, C. Paape, C. Balzer, W. Neuhauser, C. Wunderlich, Appl. Phys. B 103, 327 (2011). doi:10.1007/s00340-011-4502-7

    Article  ADS  Google Scholar 

  19. G. Leschhorn, T. Hasegawa, T. Schaetz, Appl. Phys. B 108, 159 (2012). doi:10.1007/s00340-012-5101-y

    Article  ADS  Google Scholar 

  20. R.G. DeVoe, C. Kurtsiefer, Phys. Rev. A 65, 063407 (2002). doi:10.1103/PhysRevA.65.063407

    Article  ADS  Google Scholar 

  21. R.D. Graham, S. Chen, T. Sakrejda, J. Wright, Z. Zhou, B.B. Blinov, AIP Adv. 4, 057124 (2014). doi:10.1063/1.4879817

    Article  ADS  Google Scholar 

  22. M. Cetina, A. Grier, J. Campbell, I. Chuang, V. Vuletić, Phys. Rev. A 76, 041401(R) (2007). doi:10.1103/PhysRevA.76.041401

    Article  ADS  Google Scholar 

  23. J.M. Sage, A.J. Kerman, J. Chiaverini, Phys. Rev. A 86, 013417 (2012). doi:10.1103/PhysRevA.86.013417

    Article  ADS  Google Scholar 

  24. R.E. Russo, Appl. Spectrosc. 49, 14A (1995)

    Article  ADS  Google Scholar 

  25. P.R. Willmott, J.R. Huber, Rev. Mod. Phys. 72, 315 (2000). doi:10.1103/RevModPhys.72.315

    Article  ADS  Google Scholar 

  26. R.J. Hendricks, D.M. Grant, P.F. Herskind, A. Dantan, M. Drewsen, Appl. Phys. B 88, 507 (2007). doi:10.1007/s00340-007-2698-3

    Article  ADS  Google Scholar 

  27. K. Sheridan, W. Lange, M. Keller, Appl. Phys. B 104, 755 (2011). doi:10.1007/s00340-011-4563-7

    Article  ADS  Google Scholar 

  28. R.D. Knight, App. Phys. Lett. 38, 221 (1981). doi:10.1063/1.92315

    Article  ADS  Google Scholar 

  29. C.G. Gill, B. Daigle, M.W. Blades, Spectrochim. Acta Part B 46, 1227 (1991). doi:10.1016/0584-8547(91)80117-L

    Article  ADS  Google Scholar 

  30. Y. Matsuo, H. Maeda, M. Takami, Hyperfine Interact. 74, 269 (1992). doi:10.1007/BF02398636

    Article  ADS  Google Scholar 

  31. C.G. Gill, A.W. Garrett, P.H. Hemberger, N. Nogar, Spectrochim. Acta Part B 51, 851 (1996). doi:10.1016/0584-8547(96)01467-X

    Article  ADS  Google Scholar 

  32. Y. Hashimoto, L. Matsuoka, H. Osaki, Y. Fukushima, S. Hasegawa, Jpn. J. Appl. Phys. 45, 7108 (2006). doi:10.1143/JJAP.45.7108

    Article  ADS  Google Scholar 

  33. D.R. Leibrandt, R.J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K.R. Brown, I.L. Chuang, Phys. Rev. A 76, 055403 (2007). doi:10.1103/PhysRevA.76.055403

    Article  ADS  Google Scholar 

  34. T. Kwapień, U. Eichmann, W. Sandner, Phys. Rev. A 75, 063418 (2007). doi:10.1103/PhysRevA.75.063418

    Article  ADS  Google Scholar 

  35. T.A. Schmitz, G. Gamez, P.D. Setz, L. Zhu, R. Zenobi, Anal. Chem. 80, 6537 (2008). doi:10.1021/ac8005044

    Article  Google Scholar 

  36. K. Zimmermann, M.V. Okhapkin, O.A. Herrera-Sancho, E. Peik, Appl. Phys. B 107, 883 (2012). doi:10.1007/s00340-012-4884-1

    Article  ADS  Google Scholar 

  37. V.H.S. Kwong, Phys. Rev. A 39, 4451 (1989). doi:10.1103/PhysRevA.39.4451

    Article  ADS  MathSciNet  Google Scholar 

  38. C.J. Campbell, A.V. Steele, L.R. Churchill, M.V. DePalatis, D.E. Naylor, D.N. Matsukevich, A. Kuzmich, M.S. Chapman, Phys. Rev. Lett. 102, 233004 (2009). doi:10.1103/PhysRevLett.102.233004

    Article  ADS  Google Scholar 

  39. S. Olmschenk, B. Bedacht, N. Theisen, Bull. Am. Phys. Soc. 59 (2014). http://meetings.aps.org/link/BAPS.2014.DAMOP.Q1.25

  40. M. Lepers, Y. Hong, J.F. Wyart, O. Dulieu, Phys. Rev. A 93, 011401(R) (2016). doi:10.1103/PhysRevA.93.011401

    Article  ADS  Google Scholar 

  41. W.C. Wiley, I.H. McLaren, Rev. Sci. Inst. 26, 1150 (1955). doi:10.1063/1.1715212

    Article  ADS  Google Scholar 

  42. C. Champenois, J. Phys. B 42, 154002 (2009). doi:10.1088/0953-4075/42/15/154002

    Article  ADS  Google Scholar 

  43. I.S. Gilmore, M.P. Seah, Appl. Surf. Sci. 144, 113 (1999). doi:10.1016/S0169-4332(98)00779-X

    Article  ADS  Google Scholar 

  44. S.T. Sullivan, The motion trap: a hybrid atom-ion trap system for experiments in cold-chemistry and the production of cold polar molecular ions. Ph.D. thesis, UCLA (2013). http://escholarship.org/uc/item/0c36c29j

  45. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T.W. Hänsch, Op. Comm. 117, 541 (1995). doi:10.1016/0030-4018(95)00146-Y

    Article  ADS  Google Scholar 

  46. A.C. Wilson, C. Ospelkaus, A.P. VanDevender, J.A. Mlynek, K.R. Brown, D. Leibfried, D.J. Wineland, Appl. Phys. B 105, 741 (2011). doi:10.1007/s00340-011-4771-1

    Article  ADS  Google Scholar 

  47. H. Lo, J. Alonso, D. Kienzler, B.C. Keitch, L.E. de Clercq, V. Negnevitsky, J.P. Home, Appl. Phys. B 114, 17 (2014). doi:10.1007/s00340-013-5605-0

    Article  ADS  Google Scholar 

  48. A.E. Hussein, P.K. Diwakar, S.S. Harilal, A. Hassanein, J. Appl. Phys. 113, 143305 (2013). doi:10.1063/1.4800925

    Article  ADS  Google Scholar 

  49. T. Bergmann, T.P. Martin, H. Schaber, Rev. Sci. Inst. 61, 2592 (1990). doi:10.1063/1.1141843

    Article  ADS  Google Scholar 

  50. S.J. Schowalter, K. Chen, W.G. Rellergert, S.T. Sullivan, E.R. Hudson, Rev. Sci. Inst. 83, 043103 (2012). doi:10.1063/1.3700216

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Peik for useful discussions about laser ablation; D. Hanneke for useful discussions about SHG cavity design; P. Banner, J. Hankes, and A. Nelson for technical contributions to the ion trap setup; and D. Burdick for expert machining. P.B. acknowledges support from the J. Reid & Polly Anderson Endowed Fund at Denison University. This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office under contract/grant number W911NF-13-1-0410; Research Corporation for Science Advancement through Cottrell College Science Award 22646; and Denison University. Specific product citations are for the purpose of clarification only, and are not an endorsement by the authors, the U. S. Army Research Laboratory, the U. S. Army Research Office, Research Corporation for Science Advancement, or Denison University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Olmschenk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olmschenk, S., Becker, P. Laser ablation production of Ba, Ca, Dy, Er, La, Lu, and Yb ions. Appl. Phys. B 123, 99 (2017). https://doi.org/10.1007/s00340-017-6683-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6683-1

Keywords

Navigation