Skip to main content
Log in

Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report spectroscopic and laser properties for propagation directions outside the principal axes of Yb3+-doped low symmetry laser crystals with a special devotion to the wavelength dependence anisotropy. We illustrate our report with experimental data in the 900–1075 nm range of wavelengths from the Yb3+:La2CaB10O19 monoclinic crystal excited under laser diode pumping at 975 nm. This study, which makes easier the realization of Yb3+ lasers with an efficient free-running operation at the wavelength having the highest emission intensity or at a specified wavelength, or emitting two frequencies with a specified frequency difference, is of promising interest for applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.L. DeLoach, A.S. Payne, L.L. Chase, K.L. Smith, W.L. Kway, W.F. Krupke, IEEE J. Quantum Electron. 29, 1179 (1993)

    Article  ADS  Google Scholar 

  2. F.D. Patel, E.C. Honea, J. Speth, S.A. Payne, R. Hutcheson, R. Equall, IEEE J. Quantum Electron. 37, 135 (2001)

    Article  ADS  Google Scholar 

  3. D.S. Sumida, A.A. Betin, H. Bruesselbach, R. Bryen, S. Matthews, R. Reeder, M.S. Mangir, Laser Focus World 35, 63 (1999)

    Google Scholar 

  4. L. Goldberg, C. McIntosh, B. Cole, Opt. Express 19, 4261 (2011)

    Article  ADS  Google Scholar 

  5. H. Hugel, Opt. Lasers Eng. 34, 213 (2000)

    Article  ADS  Google Scholar 

  6. F. Brunner et al., Opt. Lett. 27, 1162 (2002)

    Article  ADS  Google Scholar 

  7. J. Akiyama, Y. Sato, T. Taira, Opt. Lett. 35, 3598 (2010)

    Article  ADS  Google Scholar 

  8. J.E. Hellstrom et al., Laser Phys. 17, 1204 (2007)

    Article  ADS  Google Scholar 

  9. A. Major, D. Sandkuijl, V.A. Barzda, Laser Phys. Lett. 6, 779 (2009)

    Article  ADS  Google Scholar 

  10. A. Brenier, C. Tu, Z. Zhu, J. Li, Appl. Phys. Lett. 90, 071103 (2007)

    Article  ADS  Google Scholar 

  11. A. Brenier, IEEE J. Quantum Electron. 47, 279 (2011)

    Article  ADS  Google Scholar 

  12. A. Brenier, Laser Phys. Lett. 8, 520 (2011)

    Article  ADS  Google Scholar 

  13. M. Tani, P. Gu, M. Hyodo, K. Sakai, T. Hidaka, Opt. Quantum Electron. 32, 503 (2000)

    Article  Google Scholar 

  14. K. Sakai, Terahertz Optoelectronics (Springer, Berlin, 2005)

    Book  Google Scholar 

  15. Kh.G. Kitaeva, Laser Phys. Lett. 5, 559 (2008)

    Article  ADS  Google Scholar 

  16. T. Tanabe, K. Suto, J.-I. Nishizawa, T.J. Sasaki, J. Phys. D, Appl. Phys. 37, 155 (2004)

    Article  ADS  Google Scholar 

  17. Y.J. Ding, IEEE J. Sel. Top. Quantum Electron. 13, 705 (2007)

    Article  Google Scholar 

  18. Y.J. Ding, Y. Jiang, G. Xu, I.B. Zotova, Laser Phys. 20, 917 (2010)

    Article  ADS  Google Scholar 

  19. A. Muller, J. Faist, Nat. Photonics 4, 291 (2010)

    Article  Google Scholar 

  20. M. Koch, Opt. Photonics News 18, 21 (2007)

    Article  ADS  Google Scholar 

  21. I. Duling, D. Zimdars, Laser Focus World 43, 63 (2007)

    Google Scholar 

  22. W. Voigt, Philos. Mag., Ser. 6 4, 90 (1902)

    Article  MATH  Google Scholar 

  23. S. Pancharatnam, Proc. Indian Acad. Sci. A 40 A, 196 (1954)

    Google Scholar 

  24. V.M. Agranovitch, V.L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons (Springer, Berlin, 1984)

    Book  Google Scholar 

  25. Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, J. Zaccaro, G. Aka G, Opt. Express 16, 7997 (2008)

    Article  ADS  Google Scholar 

  26. S. Joly, Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, G. Aka, Opt. Express 17, 19868 (2009)

    Article  ADS  Google Scholar 

  27. A. Brenier, Y. Wu, J. Zhang, P. Fu, J. Appl. Phys. 108, 093101 (2010)

    Article  ADS  Google Scholar 

  28. Y. Petit, S. Joly, P. Segonds, B. Boulanger, Laser Phys. 21, 1305 (2011)

    Article  ADS  Google Scholar 

  29. F. Jing, Y. Wu, P. Fu, J. Cryst. Growth 285, 270 (2005)

    Article  ADS  Google Scholar 

  30. J. Zhang, Y. Wu, G. Zhang, Y. Zu, P. Fu, Y. Wu, Cryst. Growth Des. 10, 1574 (2010)

    Article  Google Scholar 

  31. J. Gerardin, A. Lakhtakia, Optik 112, 493 (2001)

    Article  ADS  Google Scholar 

  32. D.E. McCumber, Phys. Rev. 136, 954 (1964)

    Article  ADS  Google Scholar 

  33. F. Jing, P. Fu, Y. Wu, Y. Zu, X. Wang, Opt. Mater. 30, 1867 (2008)

    Article  ADS  Google Scholar 

  34. A. Majchrowski, A. Mandowska, I.V. Kityk, J. Kasperczyk, M.G. Brick, I. Sildos, Curr. Opin. Solid State Mater. Sci. 12, 32 (2009)

    Article  ADS  Google Scholar 

  35. A.H. Reshak, S. Auluk, I.V. Kityk, Phys. Rev. B 75, 245120 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the French Agence Nationale de la Recherche (Grant No. BLAN06-1_140754) and by the National Basic Research Project of China (No. 2010CB630701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brenier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenier, A., Wu, Y., Zhang, J. et al. Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19 . Appl. Phys. B 107, 59–65 (2012). https://doi.org/10.1007/s00340-011-4852-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4852-1

Keywords

Navigation