Skip to main content
Log in

Organic semiconductor photodiode based on indigo carmine/n-Si for optoelectronic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The fabrication of indigo carmine/n-Si photodiode has been done, and a robust dark and photocurrent–voltage (IV), capacitance vs. voltage (C–V) and conductance vs. voltage (G–V) studies were done over a wide range of applied voltage and frequencies. The surface morphology was assessed by atomic force microscope (AFM), and the grain size was measured to be about 66 nm. The reverse current increased with both increasing illumination intensity and bias potential, whereas the forward current increased exponentially with bias potential. The responsivity value was also calculated. Barrier height and ideality factor of diode were estimated through a \(\log (I)\) vs \(\log (V)\) plot, and obtained to be 0.843 and 4.75 eV, respectively. The Vbi values are found between 0.95 and 1.2V for frequencies ranging between 100 kHz and 1 MHz. The value of R s is found to be lower at higher frequencies which may be due to a certain distribution of localized interface states. A strong frequency and voltage dependency were observed for interface states density Nss in the present indigo carmine/n-Si photodiode, and this explained the observed capacitance and resistance variation with frequency. These results suggest that the fabricated diode has the potential to be applied in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.M. Sze, K.K. Ng, Physics of semiconductor devices, Wiley, New Jersey, 2006

    Book  Google Scholar 

  2. R. Jansen, Spintronics: solar spin devices see the light. Nature materials 12, 779 (2013)

    Article  ADS  Google Scholar 

  3. N.R. Armstrong, W. Wang, D.M. Alloway, D. Placencia, E. Ratcliff, M. Brumbach, Organic/organic′ heterojunctions: organic light emitting diodes and organic photovoltaic devices. Macromol. Rapid Commun. 30, 717–731 (2009)

    Article  Google Scholar 

  4. C.W. Lee, O.Y. Kim, J.Y. Lee, Organic materials for organic electronic devices. J. Ind. Eng. Chem. 20, 1198–1208 (2014)

    Article  Google Scholar 

  5. Ö Güllü, Ş Aydoğan, M. Biber, A. Türüt, Fabrication and electrical properties of Al/phenolsulfonphthalein/n-Si/AuSb structure. Vacuum 82, 1264–1268 (2008)

    Article  Google Scholar 

  6. Ö Güllü, Ş Aydoğan, A. Türüt, Fabrication and electrical properties of Al/Safranin T/n-Si/AuSb structure. Semicond. Sci. Technol. 23, 075005 (2008)

    Article  Google Scholar 

  7. Ş Aydoğan, Ö Güllü, A. Türüt, Fabrication and electrical properties of Al/aniline green/n-Si/AuSb structure. Mater. Sci. Semicond. Process. 11, 53–58 (2008)

    Article  Google Scholar 

  8. Ö Güllü, S. Asubay, Ş Aydoğan, A. Türüt, Electrical characterization of the Al/new fuchsin/n-Si organic-modified device. Low-Dimens. Syst. Nanostruct. Phys. E. 42, 1411–1416 (2010)

    Article  Google Scholar 

  9. M. Punke, S. Mozer, M. Stroisch, M. Gerken, G. Bastian, U. Lemmer, D.G. Rabus, P. Henzi, Organicsemiconductordevicesformicro-opticalapplications. In: Proc. of SPIE Vol, 2006, pp 618505–618501

  10. N. Kaur, M. Singh, D. Pathak, T. Wagner, J. Nunzi, Organic materials for photovoltaic applications: Review and mechanism. Synth. Met. 190, 20–26 (2014)

    Article  Google Scholar 

  11. P. Jansen-vanVuuren,Armin,Pandey,Burn,Meredith, Organic photodiodes: the future of full color detection and image sensing. Adv. Mater. 28, 4766–4802 (2016)

    Article  Google Scholar 

  12. A.J. Kuehne, M.C. Gather, Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem. Rev. 116, 12823–12864 (2016)

    Article  Google Scholar 

  13. E.D. Głowacki, G. Voss, L. Leonat, M. Irimia-Vladu, S. Bauer, N.S. Sariciftci, Indigo and Tyrian purple–from ancient natural dyes to modern organic semiconductors. Isr. J. Chem. 52, 540–551 (2012)

    Article  Google Scholar 

  14. R.J. Mortimer, A.L. Dyer, J.R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays 27, 2–18 (2006)

    Article  Google Scholar 

  15. L. Loguercio, C. Alves, A. Thesing, J. Ferreira, Enhanced electrochromic properties of a polypyrrole–indigo carmine–gold nanoparticles nanocomposite. Phys. Chem. Chem. Phys. 17, 1234–1240 (2015)

    Article  Google Scholar 

  16. T. Mayr, T. Abel, E. Kraker, S. Köstler, A. Haase, C. Konrad, M. Tscherner, B. Lamprecht, An optical sensor array on a flexible substrate with integrated organic opto-electric devices (Procedia Engineering, 51008 – 1005, 2010)

    Google Scholar 

  17. Y. Shi, G. Yu, Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem. Mater. 28, 2466–2477 (2016)

    Article  Google Scholar 

  18. Y. Qu, X. Duan, One-dimensional homogeneous and heterogeneous nanowires for solar energy conversion. J. Mater. Chem. 22, 16171–16181 (2012)

    Article  Google Scholar 

  19. F. Yakuphanoglu, M. Caglar, Y. Caglar, S. Ilican, Electrical characterization of nanocluster n-CdO/p-Si heterojunction diode. J. Alloy. Compd. 506, 188–193 (2010)

    Article  Google Scholar 

  20. G. Eftekhari, Variation in the effective Richardson constant of metal—GaAs and Metal—InP contacts due to the effect of processing parameters. Physica Status Solidi (a) 140, 189–194 (1993)

    Article  ADS  Google Scholar 

  21. M. Farag,Yahia,Fadel, Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode. Int. J. Hydrogen Energy 34, 4906–4913 (2009)

    Article  Google Scholar 

  22. K. Liu, M. Sakurai, M. Aono, ZnO-based ultraviolet photodetectors. Sensors 10, 8604–8634 (2010)

    Article  Google Scholar 

  23. A.S. Dahlan, A. Tataroğlu, A.A. Al-Ghamdi, A.A. Al-Ghamdi, S. Bin-Omran, Y. Al-Turki, F. El-Tantawy, F. Yakuphanoglu, Photodiode and photocapacitor properties of Au/CdTe/p-Si/Al device, J. Alloy. Compd.,646 1151–1156 (2015)

    Article  Google Scholar 

  24. S.-H. Park, K. Ogino, H. Sato, Synthesis and characterization of a main-chain polymer for single component photorefractive materials. Synth. Met. 113, 135–143 (2000)

    Article  Google Scholar 

  25. S.M. Sze, Semiconductor devices: physics and technology, Wiley, New Jersey, 2008

    Google Scholar 

  26. M. Soylu, R. Ocaya, H. Tuncer, A.A. Al-Ghamdi, A. Dere, D.C. Sari, F. Yakuphanoglu, Analysis of photovoltaic behavior of Si-based junctions containing novel graphene oxide/nickel (II) phthalocyanine composite films. Microelectron. Eng. 154, 53–61 (2016)

    Article  Google Scholar 

  27. L. Saadoune, N. Dehimi, M. Sengouga, B. McPherson, Jones, Modelling of semiconductor diodes made of high defect concentration, irradiated, high resistivity and semi-insulating material: The capacitance–voltage characteristics, Solid-State Electron. 50, 1182–1178 (2006)

    Article  ADS  Google Scholar 

  28. E.H. Nicollian, J.R. Brews, MOS (metal oxide semiconductor) physics and technology, Wiley, New York, 1982

    Google Scholar 

  29. E.H. Rhoderick, Metal-semiconductor contacts, In: IEE Proceedings I-Solid-State and Electron Devices, 129, (1982) 1

  30. M. Mingebach, C. Deibel, V. Dyakonov, Built-in potential and validity of the Mott-Schottky analysis in organic bulk heterojunction solar cells. Phys. Rev. B 84, 153201-1–153201-4 (2011)

    Article  ADS  Google Scholar 

  31. H. Morkoç, Nitride semiconductor devices: fundamentals and applications, Wiley, New Jersey, 2013

    Book  Google Scholar 

  32. İ Yücedağ, Ş Altındal, A. Tataroğlu, On the profile of frequency dependent series resistance and dielectric constant in MIS structure. Microelectron. Eng. 84, 180–186 (2007)

    Article  Google Scholar 

  33. M.-S. Kang, J.-J. Ahn, K.-S. Moon, S.-M. Koo, Metal work-function-dependent barrier height of Ni contacts with metal-embedded nanoparticles to 4H-SiC. Nanoscale Res. Lett. 7, 75–75 (2012)

    Article  ADS  Google Scholar 

  34. W. Hill, C. Coleman, A single-frequency approximation for interface-state density determination. Solid-State Electronics 2, 993–987 (1980) (3)

    Google Scholar 

  35. S. Zeyrek, E. Acaroğlu, Ş Altındal, S. Birdoğan, M.M. Bülbül, The effect of series resistance and interface states on the frequency dependent C–V and G/w–V characteristics of Al/perylene/p-Si MPS type Schottky barrier diodes. Curr. Appl. Phys. 13, 1225–1230 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant number R.G.P.2/9/38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. AlFaify.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in the current work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, V., Manthrammel, M.A., Shkir, M. et al. Organic semiconductor photodiode based on indigo carmine/n-Si for optoelectronic applications. Appl. Phys. A 124, 424 (2018). https://doi.org/10.1007/s00339-018-1832-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1832-x

Navigation