Skip to main content
Log in

A novel CuO–N-doped graphene nanocomposite-based hybrid electrode for the electrochemical detection of glucose

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report a catalyst of N-doped graphene CuO nanocomposite, for the non-enzymatic electrocatalytic oxidation of glucose. The hybrid nanocomposite was synthesized by copper sulfate, cetyl ammonium bromide and graphite as starting materials. The synthesized composites were characterized with the techniques like X-ray diffraction, field emission scanning electron microscopy, transmission electron microscope to study the crystalline phase and morphological structure. Based on this composite, a non-enzymatic glucose sensor was constructed. Cyclic voltammetry and chronoamperometry methods were done to investigate the electrocatalytic properties of glucose in alkaline medium. For glucose detection, the fabricated sensor showed a linear response over a wide range of concentration from 3 to 1000 µM, with sensitivity of 2365.7 µA mM−1 cm−2 and a fast response time of 5 s. The designed sensor exhibited negligible current response to the normal concentration of common interferents in the presence of glucose. All these favorable advantages of the fabricated glucose sensor suggest that it may have good potential application in biological samples, food and other related areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Wang, Y. Zheng, X. Lu, Z. Li, L. Sun, Y. Song, Sens. Actuators, B 195, 1–7 (2014)

    Article  Google Scholar 

  2. J. Yang, W.D. Zhang, S. Gunasekaran, Biosens. Bioelectron. 26, 279–284 (2010)

    Article  Google Scholar 

  3. X. Niu, M. Lan, H. Zhao, C. Chen, Anal. Chem. 85, 3561–3569 (2013)

    Article  Google Scholar 

  4. C. He, J. Liu, Q. Zhang, C. Wu, Sens. Actuators, B 166–167, 802–808 (2012)

    Article  Google Scholar 

  5. H. Deng, A.K.L. Teo, Z. Gao, Sens. Actuators, B 191, 522–528 (2014)

    Article  Google Scholar 

  6. L. Fotouhi, M. Fatollahzadeh, M.M. Heravi, Int. J. Electrochem. Sci. 7, 3919–3928 (2012)

    Google Scholar 

  7. J. Kremeskotter, R. Wilson, D.J. Schiffrin, B.J. Luff, J.S. Wilkinson, Meas. Sci. Technol. 6, 1325–1328 (1995)

    Article  ADS  Google Scholar 

  8. B. Fang, A. Gu, G. Wang, W. Wang, Y. Feng, C. Zhang, X. Zhang, Appl. Mater. Interfaces 12, 2829–2834 (2009)

    Article  Google Scholar 

  9. M.B. Gholivand, L.M. Behzad, J. Electroanal. Chem. 712, 33–39 (2014)

    Article  Google Scholar 

  10. D. Xu, L. Luo, Y. Ding, L. Jiang, Y. Zhang, X. Ouyang, B. Liu, J. Electroanal. Chem. 727, 21–26 (2014)

    Article  Google Scholar 

  11. K.E. Toghill, R.G. Compton, Int. J. Electrochem. Sci. 5, 1246–1301 (2010)

    Google Scholar 

  12. S. Liu, B. Yu, T. Zhang, Electrochim. Acta 102, 104–107 (2013)

    Article  Google Scholar 

  13. K. Khun, Z.H. Ibupotob, X. Liuc, V. Benid, M. Willander, Mater. Sci. Eng., B 194, 94–100 (2015)

    Article  Google Scholar 

  14. Y. Zhong, T. Shi, Z. Liu, S. Cheng, Y. Huang, X. Tao, G. Liao, Z. Tang, Sens. Actuators, B 236, 326–333 (2016)

    Article  Google Scholar 

  15. X. Cao, N. Wang, Analyst 136, 4241–4246 (2011)

    Article  ADS  Google Scholar 

  16. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, Prog. Mater Sci. 60, 208–337 (2014)

    Article  Google Scholar 

  17. J. Tian, H. Li, Z. Xing, L. Wang, Y. Luo, A.M. Asiri, A.O.A. Youbi, X. Sun, Catal. Sci. Technol. 2, 2227–2230 (2012)

    Google Scholar 

  18. S. Majeed, J. Zhao, L. Zhang, S. Anjum, Z. Liu, G. Xu, Nanotechnol. Rev. 2(6), 615–635 (2013)

    Article  Google Scholar 

  19. K. Krishnamoorthy, G.S. Kim, S.J. Kim, Ultrason. Sonochem. 20, 644–649 (2013)

    Article  Google Scholar 

  20. Y.W. Hsu, T.K. Hsu, C.L. Sun, Y.T. Nien, N.W. Pu, M.D. Ger, Electrochim. Acta 82, 152–157 (2012)

    Article  Google Scholar 

  21. L. Luo, L. Zhu, Z. Wang, Bioelectrochemistry 88, 156–163 (2012)

    Article  Google Scholar 

  22. Y. Li, F. Huang, J. Chen, T. Mo, S. Li, F. Wang, S. Feng, Y. Li, Int. J. Electrochem. Sci. 8, 6332–6342 (2013)

    Google Scholar 

  23. Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, J. Lin, J. Mater. Chem. 21, 8038–8044 (2011)

    Article  Google Scholar 

  24. K. Zhang, P. Han, L. Gu, L. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Dong, Z. Zhang, J. Yao, H. Xu, G. Cui, L. Chen, Appl. Mater. Interfaces 4, 658–664 (2012)

    Article  Google Scholar 

  25. H. Wang, H.S. Casalongue, Y. Liang, H. Da, J. Am. Chem. Soc. 132, 7472–7477 (2010)

    Article  Google Scholar 

  26. D. Jiang, Q. Liu, K. Wang, J. Qian, X. Dong, Z. Yang, X. Du, B. Qiu, Biosens. Bioelectron. 54, 273–278 (2014)

    Article  Google Scholar 

  27. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 9, 1752–1758 (2009)

    Article  ADS  Google Scholar 

  28. R.I. Jafri, N. Rajalakshmi, S. Ramaprabhu, J. Mater. Chem. 20, 7114–7117 (2010)

    Article  Google Scholar 

  29. D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.H. Yoon, Langmuir 26(20), 16096–16102 (2010)

    Article  Google Scholar 

  30. C.L. Sun, W.L. Cheng, T.K. Hsu, C.W. Chang, J.L. Chang, J.M. Zen, Electrochem. Commun. 30, 91–94 (2013)

    Article  Google Scholar 

  31. J. Borowiec, R. Wang, L. Zhu, J. Zhang, Electrochim. Acta 99, 138–144 (2013)

    Article  Google Scholar 

  32. G. Srinivas, Y. Zhu, R. Piner, N. Skipper, M. Ellerby, R. Ruoff, Carbon 48, 630–635 (2010)

    Article  Google Scholar 

  33. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  34. B. Li, T. Liu, L. Hu, Y. Wang, J. Phys. Chem. Solids 74, 635–640 (2013)

    Article  ADS  Google Scholar 

  35. N. Yusoff, N.M. Huang, M.R. Muhamad, S.V. Kumar, H.N. Lim, I. Harrison, Mater. Lett. 93, 393–396 (2013)

    Article  Google Scholar 

  36. W. Guo, H. Li, M. Li, W. Dai, Z. Shao, X. Wu, B. Yang, Carbon 79, 636–645 (2014)

    Article  Google Scholar 

  37. A. Rahnama, M. Gharagozlou, Opt. Quant. Electron. 44, 313–322 (2012)

    Article  Google Scholar 

  38. A. Pendashteh, M.F. Mousavi, M.S. Rahmanifar, Electrochim. Acta 88, 347–357 (2013)

    Article  Google Scholar 

  39. C. Yang, F. Xiao, J. Wang, X. Su, Sens. Actuators, B 207, 177–185 (2015)

    Article  Google Scholar 

  40. Y. Zhao, X. Song, Q. Song, Z. Yin, CrystEngComm 14, 6710–6719 (2012)

    Article  Google Scholar 

  41. D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T.K. Sham, X. Sun, S. Ye, S. Knights, Appl. Surf. Sci. 257(21), 9193–9198 (2011)

    Article  ADS  Google Scholar 

  42. L. Zhang, Z. Gao, C. Liu, L. Ren, Z. Tu, R. Liu, F. Yang, Y. Zhang, Z. Ye, Y. Li, L. Cui, RSC Adv. 4, 47455–47460 (2014)

    Article  Google Scholar 

  43. I. Taurino, S. Carrara, M. Giorcelli, A. Tagliaferro, G.D. Micheli, Surf. Sci. 606, 156–160 (2012)

    Article  ADS  Google Scholar 

  44. J. Wang, W.D. Zhang, Electrochim. Acta 56, 7510–7516 (2011)

    Article  Google Scholar 

  45. S. Felix, P. Kollu, B.P.C. Raghupathy, S.K. Jeong, A.N. Grace, J. Electroanal. Chem. 739, 1–9 (2015)

    Article  Google Scholar 

  46. R.M. Yuan, H.J. Li, X.M. Yin, H.J. Lu, L.L. Zhang, Talanta 174, 514–520 (2017)

    Article  Google Scholar 

  47. J. Lv, C. Kong, Y. Xu, Z. Yang, X. Zhang, S. Yang, G. Meng, J. Bi, J. Li, S. Yang, Sens. Actuators B Chem. 248, 630–638 (2017)

    Article  Google Scholar 

  48. M. Velmurugan, N. Karikalan, S.M. Chen, J. Colloid Interface Sci. 493, 349–355 (2017)

    Article  ADS  Google Scholar 

  49. M. Chawla, V. Sharma, J.K. Randhawa, Electrocatalysis 8, 27–35 (2017)

    Article  Google Scholar 

  50. J. Yang, W. Tan, C. Chen, Y. Tao, Y. Qin, Y. Kong, Mater. Sci. Eng., C 78, 210–217 (2017)

    Article  Google Scholar 

  51. Y.Q. Wang, Z.Y. Ji, X.P. Shen, G. Zhu, J. Wang, X. Yue, New J. Chem. 41, 9223–9229 (2017)

    Article  Google Scholar 

  52. N. Lu, C. Shao, X. Li, F. Miao, K. Wang, Y. Liu, Ceram. Int. 42, 11285–11293 (2016)

    Article  Google Scholar 

  53. Y. Tian, Y. Liu, W.P. Wang, X. Zhang, W. Peng, Electrochem. Acta 156, 244–251 (2015)

    Article  Google Scholar 

  54. S. Yang, G. Li, D. Wang, Z. Qiao, L. Qu, Sens. Actuators B Chem. 238, 588–595 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out with the help of VIT management through Research scholarship. Authors acknowledge SAIF, IIT Bombay for characterization facilities. Pratap Kollu thanks DST-INSPIRE Faculty award and Newton Alumnus Funding for extending partial support during the course of investigations. The funding was provided by Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pratap Kollu or Andrews Nirmala Grace.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felix, S., Kollu, P., Jeong, S.K. et al. A novel CuO–N-doped graphene nanocomposite-based hybrid electrode for the electrochemical detection of glucose. Appl. Phys. A 123, 620 (2017). https://doi.org/10.1007/s00339-017-1217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1217-6

Navigation