Skip to main content
Log in

Physical properties in polydomain c/a/c/a phase PbTiO3 ferroelectric thick films: effect of thermal stresses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The thermal stress dependence of the physical properties of polydomain PbTiO3 films on different substrates are investigated using a nonlinear Ginzburg–Landau–Devonshire thermodynamic model as a function of deposition temperature T G and thermal expansion coefficients. It is found that the thermal strain has a large impact on the ferroelectric polarization states and other physical properties for the thicker ferroelectric thin films. Extrinsic contributions from 90° domain wall displacements are found to dramatically impact the dielectric, pyroelectric, and piezoelectric responses. Most importantly, the dielectric and piezoelectric constants in the polydomain c/a/c/a phase is much larger than that of the monodomain c phase, while the results are opposite for the ferroelectric polarization and pyroelectric coefficient. Careful choice of thermal stress and domain states allows one to harness the intrinsic and extrinsic contributions to obtain large physical responses. Our work is in good agreement with experimental results and phase–field simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Setter, D. Damjanovic, L. Eng et al., J. Appl. Phys. 100, 051606 (2006)

    Article  ADS  Google Scholar 

  2. J.F. Scott, Science 315, 954 (2007)

    Article  ADS  Google Scholar 

  3. M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys. 77, 1083 (2005)

    Article  ADS  Google Scholar 

  4. J.F. Scott, Annu. Rev. Mater. Res. 41, 1 (2011)

    Article  Google Scholar 

  5. M. Valant, Prog. Mater. Sci. 57, 980 (2012)

    Article  Google Scholar 

  6. J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, Nature 430, 758 (2004)

    Article  ADS  Google Scholar 

  7. K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.-Q. Chen, D.G. Schlom, C.B. Eom, Science 306, 1005 (2004)

    Article  ADS  Google Scholar 

  8. N.A. Pertsev, A.G. Zembilgotov, A.K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998)

    Article  ADS  Google Scholar 

  9. D.G. Schlom et al., Annu. Rev. Mater. Res. 37, 589 (2007)

    Article  ADS  Google Scholar 

  10. G. Bai, W.H. Ma, Phys. B 405, 1901 (2010)

    Article  ADS  Google Scholar 

  11. Q.Y. Qiu, S.P. Alpay, V. Nagarajan, J. Appl. Phys. 107, 114105 (2010)

    Article  ADS  Google Scholar 

  12. A.R. Damodaran, J.C. Agar, S. Pandya, Z.H. Chen, L. Dedon, R. Xu, B. Apgar, S. Saremi, L.W. Martin, J. Phys. Condens. Matter 28, 263001 (2016)

    Article  ADS  Google Scholar 

  13. T. Ogawa, A. Senda, T. Kasanami, Jpn. J. Appl. Phys. 30, 2145 (1991)

    Article  ADS  Google Scholar 

  14. D. Tenne et al., Phys. Rev. B 69, 2 (2004)

    Article  Google Scholar 

  15. L.W. Martin, A.M. Rappe, Nat. Rev. Mater. 2, 16087 (2016)

    Article  ADS  Google Scholar 

  16. J. Karthik, L.W. Martin, Phys. Rev. B 84, 024102 (2011)

    Article  ADS  Google Scholar 

  17. J. Karthik, J.C. Agar, A.R. Damodaran, L.W. Martin, Phys. Rev. Lett. 109, 257602 (2012)

    Article  ADS  Google Scholar 

  18. D.M. Kim, C.B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, D.G. Schlom, Appl. Phys. Lett. 88, 142904 (2006)

    Article  ADS  Google Scholar 

  19. Y.K. Kim, H. Morioka, R. Ueno, S. Yokoyama, H. Funakubo, K. Lee, S. Baik, Appl. Phys. Lett. 88, 252904 (2006)

    Article  ADS  Google Scholar 

  20. G. Bai, Z.G. Liu, X.B. Yan, C.C. Zhang, J. Appl. Phys. 116, 054103 (2014)

    Article  ADS  Google Scholar 

  21. M.T. Kesim, J. Zhang, S. Trolier-McKinstry, J.V. Mantese, R.W. Whatmore, S.P. Alpay, J. Appl. Phys. 114, 204101 (2013)

    Article  ADS  Google Scholar 

  22. Z.-G. Ban, S.P. Alpay, J. Appl. Phys. 91, 9288 (2002)

    Article  ADS  Google Scholar 

  23. G. Han, J. Ryu, W.H. Yoon, J.J. Choi, B.D. Hahn, J.W. Kim, D.S. Park, C.W. Ahn, S. Priya, D.Y. Jeong, J. Appl. Phys. 110, 124101 (2011)

    Article  ADS  Google Scholar 

  24. M.T. Kesim, J. Zhang, S.P. Alpay, L.W. Martin, Appl. Phys. Lett. 105, 052901 (2014)

    Article  ADS  Google Scholar 

  25. J. Karthik, A. Damodaran, L.W. Martin, Appl. Phys. Lett. 99, 032904 (2011)

    Article  ADS  Google Scholar 

  26. V.G. Koukhar, N.A. Pertsev, R. Waser, Phys. Rev. B 64, 214103 (2001)

    Article  ADS  Google Scholar 

  27. V.G. Kukhar, N.A. Pertsev, H. Kohlstedt, R. Waser, Phys. Rev. B 73, 214103 (2006)

    Article  ADS  Google Scholar 

  28. N.A. Pertsev, A.G. Zembilgotov, J. Appl. Phys. 78, 6170 (1995)

    Article  ADS  Google Scholar 

  29. N.A. Pertsev, A.G. Zembilgotov, J. Appl. Phys. 80, 6401 (1996)

    Article  ADS  Google Scholar 

  30. J.S. Speck, A. Seifert, W. Pompe, R. Ramesh, J. Appl. Phys. 76, 477 (1994)

    Article  ADS  Google Scholar 

  31. C.S. Ganpule, V. Nagarajan, B.K. Hill, A.L. Roytburd, E.D. Williams, R. Ramesh, S.P. Alpay, A. Roelofs, R. Waser, L.M. Eng, J. Appl. Phys. 91, 1477 (2002)

    Article  ADS  Google Scholar 

  32. S. Venkatesan, B.J. Kooi, J.T.M. De Hosson, A.H.G. Vlooswijk, B. Noheda, J. Appl. Phys. 102, 104105 (2007)

    Article  ADS  Google Scholar 

  33. B.S. Kwak, A. Erbil, J.D. Budai, M.F. Chisholm, L.A. Boatner, B.J. Wilkens, Phys. Rev. B 49, 14865 (1994)

    Article  ADS  Google Scholar 

  34. K. Lee, S. Baik, Annu. Rev. Mater. Res. 36, 81 (2006)

    Article  ADS  Google Scholar 

  35. G. Bai, D.M. Wu, Q.Y. Xie et al., J. Adv. Dielectr. 5, 1550031 (2015)

    Article  ADS  Google Scholar 

  36. G. Bai, Q.Y. Xie, Z.G. Liu, D.M. Wu, J. Appl. Phys. 118, 074101 (2015)

    Article  ADS  Google Scholar 

  37. F. Xu et al., J. Appl. Phys. 89, 1336 (2001)

    Article  ADS  Google Scholar 

  38. A.L. Kholkin et al., J. Appl. Phys. 89, 8066 (2001)

    Article  ADS  Google Scholar 

  39. W.N. Lawless, J.J. Fousek, Phys. Soc. Jpn. 28, 419 (1970)

    Article  ADS  Google Scholar 

  40. W.F. Rao, Y.U. Wang, Appl. Phys. Lett. 90, 041915 (2007)

    Article  ADS  Google Scholar 

  41. J. Hlinka, P. Ondrejkovic, P. Marton, Nanotechnology 20, 105709 (2009)

    Article  ADS  Google Scholar 

  42. A.N. Morozovska, E.A. Eliseev, O.V. Varenyk, S.V. Kalinin, J. Appl. Phys. 113, 187222 (2013)

    Article  ADS  Google Scholar 

  43. R.J. Xu, J. Karthik, A.R. Damodaran, L.W. Martin, Nat. Commun. 5, 3120 (2014)

    ADS  Google Scholar 

  44. I. Vrejoiu et al., Adv. Mater. 18, 1657 (2006)

    Article  Google Scholar 

  45. Y.L. Li, S.Y. Hu, L.Q. Chen, J. Appl. Phys. 97, 034112 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was jointly supported by National Natural Science Foundation of China (Grant numbers of 51602159, 61674050 and 11472130), the China Postdoctoral Science Foundation (2016M590449), and the Jiangsu Province Postdoctoral Science Foundation (1601242C).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Bai or Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, G., Yan, X., Li, W. et al. Physical properties in polydomain c/a/c/a phase PbTiO3 ferroelectric thick films: effect of thermal stresses. Appl. Phys. A 123, 562 (2017). https://doi.org/10.1007/s00339-017-1174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1174-0

Navigation