Skip to main content
Log in

Li concentration dependence of structural properties and optical band gap of Li-doped ZnO films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Li-doped and undoped Zinc oxide thin film by the sol–gel method and spin-coated on glass substrate, and the effect of doping on structural, optical and stress properties have been investigated. X-ray diffraction analysis showed that all the films are polycrystalline with a hexagonal wurtzite structure. For a low amount of Li up to 12%, the texture coefficient increases with the Li amount ensuring an improvement of the c-axis orientation and the crystallinity. The crystallite size seems slightly affected and ranged in the nanometer range. Beyond this, Li amount value, the texture coefficient decreases drastically showing deterioration in the growth of ZnO along c-axis. Scanning electron microscopy (SEM) images show that the morphology of films was highly influenced by Li incorporation. For Li amount exceeding 12%, SEM images show the appearance of some cracks. The optical results revealed an improvement of the total transmission when increasing the Li amount up to 12%. A linear decrease of band gap energy with the Li content was observed. The stress was calculated and found depending on the Li amount analogously to the band gap energy. Thus, the band gap energy and the stress are correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.C. Liu, S.K. Tung, J.H. Hsieh, Cryst. Growth 287, 105–111 (2006)

    Article  ADS  Google Scholar 

  2. A. Kassis, M. Saad, Sol. Energy Mater. Sol. Cells 80, 491 (2003)

    Article  Google Scholar 

  3. N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue, Y. Shigesato, Thin Solid Films 496, 99–103 (2006)

    Article  ADS  Google Scholar 

  4. J.T. Lim, C.H. Jeong, A. Vozny, J.H. Lee, M.S. Kim, G.Y. Yeom, Surf. Coat. Technol. 201, 5358–5362 (2007)

    Article  Google Scholar 

  5. M.P. Lu, J.H. Song, M.Y. Lu, M.T. Chen, Y.F. Gao, L.J. Chen, Z.L. Wang, Nano Lett. 9(2009), 1223–1229 (2009)

    Article  ADS  Google Scholar 

  6. S. Majumdar, P. Banerji, Sens. Actuator B Chem. 140, 134–138 (2009)

    Article  Google Scholar 

  7. Q. Ahsanulhaq, J.H. Kim, J.S. Lee, Y.B. Hahn, Electrochem. Commun. 12, 475–478 (2010)

    Article  Google Scholar 

  8. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Superlattices Microstruct. 34, 3–32 (2004)

    Article  ADS  Google Scholar 

  9. C. Klingshirn, R. Hauschild, H. Priller, M. Decker, J. Zeller, H. Kalt, Superlattices Microstruct. 38, 209–222 (2005)

    Article  ADS  Google Scholar 

  10. T. Minami, T. Yamamoto, T. Miyata, Thin Solid Films 366, 63–68 (2000)

    Article  ADS  Google Scholar 

  11. B.M. Ateav, A.M. Bagamadova, V.V. Mamedov, A.K. Omaev, Mater. Sci. Eng. B 65, 159–163 (1999)

    Article  Google Scholar 

  12. X.W. Sun, H.S. Kwok, J. Appl. Phys. 86(1), 408–411 (1999)

    Article  ADS  Google Scholar 

  13. A. El Hichou, M. Addou, J. Ebothé, M. Troyon, J. Lumin. 113, 183–190 (2005)

    Article  Google Scholar 

  14. X. Sun, Z. Deng, Y. Li, Mater. Chem. Phys. 80, 366–370 (2003)

    Article  Google Scholar 

  15. S. Fujihara, C. Sasaki, T. Kimura, J. Eur. Ceram. Soc. 21, 2109 (2001)

    Article  Google Scholar 

  16. D.M. Cabe, K. Johnston, M.O. Henry, E. Mc Glynn, E. Alves, J.J. Davies, Phys. B 351, 227 (2004)

    Article  ADS  Google Scholar 

  17. D.Y. Wang, J. Zhou, G. Liu, J. Alloy. Compd. 481, 802–805 (2009)

    Article  Google Scholar 

  18. S. Majumdar, P. Banerji, Superlattices Microstruct. 45, 583–589 (2009)

    Article  ADS  Google Scholar 

  19. B. Xiao, Z. Ye, Y. Zhang, Y. Zeng, L. Zhu, B. Zhao, Appl. Surf. Sci. 253, 895–897 (2006)

    Article  ADS  Google Scholar 

  20. G.A. Mohamed, E.-M. Mohamed, A. Abu El-Fadl, Phys. B 308–310, 949–953 (2001)

    Article  Google Scholar 

  21. K. Meziane, A. El Hichou, A. El Hamidi, M. Mansori, A. Liba, A. Almaggoussi, Superlattices Microstruct. 93, 297–302 (2016)

    Article  ADS  Google Scholar 

  22. S.D. Senol, M. Erdem, Ceram. Int. 42, 10929–10934 (2016)

    Article  Google Scholar 

  23. D.Y. Wang, J. Zhou, G.Z. Liu, Alloys Compd. 481, 802–805 (2009)

    Article  Google Scholar 

  24. D.N. Papadimitriou, Thin Solid Films 605, 215–223 (2016)

    Article  ADS  Google Scholar 

  25. L.H. Xu, X.Y. Li, J. Yuan, Superlattices Microstruct. 44, 276–281 (2008)

    Article  ADS  Google Scholar 

  26. L.W. Wang, F. Wu, D.X. Tian, W.J. Li, L. Fang, C.Y. Kong, M. Zhou, Alloys Compd. 623, 367–373 (2015)

    Article  Google Scholar 

  27. Y.E. Jeong, S. Park, Curr. Appl. Phys. 14, 30–33 (2014)

    Article  ADS  Google Scholar 

  28. Z. Pan, X. Tian, W. Shoukun, Y. Xia, Z. Li, J. Deng, C. Xiao, H. Guanghui, Z. Wie, Appl. Surf. Sci. 265, 870–877 (2013)

    Article  ADS  Google Scholar 

  29. S.B. Zhang, S.H. Wie, A. Zanger, Phys. Rev. B 63, 075205 (2001)

    Article  ADS  Google Scholar 

  30. C. Ravichandran, G. Srinivasan, C. Lennon, S. Sivanathan, J. Kumar, Mater. Sci. Semicond. Process 13, 46–50 (2010)

    Article  Google Scholar 

  31. C.H. Park, S.B. Zhang, S.H. Wie, Phys. Rev. B 66, 073202 (2002)

    Article  ADS  Google Scholar 

  32. Z.B. Bahsi, A.Y. Oral, Opt. Mater. 29, 672–678 (2007)

    Article  ADS  Google Scholar 

  33. R. Zamiri, A.F. Lemos, A. Reblo, H.A. Ahangar, J.M.F. Ferreira, Ceram. Int. 40, 523 (2014)

    Article  Google Scholar 

  34. J. Lai, Y.J. Lin, Y.H. Chen, H.C. Chang, C.J. Liu, Y.Z. Zou, Y.T. Shih, M.C. Wang, J. Appl. Phys. 110, 013704 (2011)

    Article  ADS  Google Scholar 

  35. T. Prasada Rao, M.C. Santosh Kumar, S. Anbumoshi Angayarkanni, M. Ashok, J. Alloy Compd. 485, 413–417 (2009)

    Article  Google Scholar 

  36. E.C. Lee, K.J. Chang, Phys. Rev. B 70, 115210 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from CNRST Morocco under Grant Number: 23UCA2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed El Hichou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meziane, K., El Hichou, A., El Hamidi, A. et al. Li concentration dependence of structural properties and optical band gap of Li-doped ZnO films. Appl. Phys. A 123, 430 (2017). https://doi.org/10.1007/s00339-017-1039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1039-6

Keywords

Navigation