Skip to main content
Log in

Fabrication of reduced graphene oxide nanosheets doped PVA composite films for tailoring their opto-mechanical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

An Erratum to this article was published on 31 May 2017

Abstract

Laminar graphene nanosheets have raised passionate attention due to their incredible physico-chemical properties. Its wide-scale, high-yield production at low-cost has made it possible to produce top class promising versatile polymer nanocomposites. Reduced graphene oxide (RGO) nanosheets were incorporated to prepare optically tunable and high mechanical strength polymer nanocomposite films. RGO-doped poly(vinyl alcohol) (PVA) nanocomposite films were prepared via solution casting. Low level RGO doping significantly altered the structural, optical and mechanical properties of pure PVA films. Most of the band structure parameters like direct/indirect band gap, band tail, refractive index, dielectric constant, optical conductivity and dispersion parameters were investigated in detail for the first time. Tauc’s, Wemple–DiDomenico, Helpin–Tsai and mixture rule models were employed to investigate optical and mechanical parameters. The applied models reinforced the experimental results in the present study. Advanced analytical techniques were engaged to characterize the nanocomposites films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Pyun, K. Matyjaszewski, Chem. Mater. 13, 3436–3448 (2001)

    Article  Google Scholar 

  2. M.K. El-Mansy, E.M. Sheha, K.R. Patel, G.D. Sharma, Optik 124, 1624–1631 (2013)

    Article  ADS  Google Scholar 

  3. M.H. Makled, E. Sheha, T.S. Shanap, M.K. El-Mansy, J. Adv. Res. 4, 531–538 (2013)

    Article  Google Scholar 

  4. C.L. Wu, M.Q. Zhang, M.Z. Rong, K. Friedrich, Compos. Sci. Technol. 62, 1327–1340 (2002)

    Article  Google Scholar 

  5. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Adv. Funct. Mater. 19, 2297–2302 (2009)

    Article  Google Scholar 

  6. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385–388 (2008)

    Article  ADS  Google Scholar 

  7. L. Liu, A.H. Barber, S. Nuriel, H.D. Wagner, Adv. Funct. Mater. 15, 975–980 (2005)

    Article  Google Scholar 

  8. A.N. Ananth, S. Umapathy, J. Sophia, T. Mathavan, D. Mangalaraj, Appl. Nanosci. 1, 87–96 (2011)

    Article  ADS  Google Scholar 

  9. M. Aslam, M.A. Kalyar, Z.A. Raza, Mater. Res. Express 3, 105036 (2016). doi:10.1088/2053-1591/3/10/105036

    Article  ADS  Google Scholar 

  10. F.F. Muhammad, S.B. Aziz, S.A. Hussein, J. Mater. Sci. Mater. Electron. 26, 521–529 (2015)

    Article  Google Scholar 

  11. S. Elliot, The Physics and Chemistry of Solids (Wiley, New York, 1998)

    Google Scholar 

  12. P.P. Sahay, R.K. Nath, S. Tewari, Cryst. Res. Technol. 42, 275–280 (2007)

    Article  Google Scholar 

  13. E.A. Davis, N.F. Mott, Philos. Mag. 22, 0903–0922 (1970)

    Article  ADS  Google Scholar 

  14. J. Tauc, A. Menth, D.L. Wood, Phys. Rev. Lett. 25, 749–752 (1970)

    Article  ADS  Google Scholar 

  15. P.K. Khare, S.K. Jain, B. Mater. Sci. 23, 17–21 (2000)

    Article  Google Scholar 

  16. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  17. O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, J. Mater. Sci. Mater. Electron. 26, 5303–5309 (2015)

    Article  Google Scholar 

  18. J. Li, L. Shao, X. Zhou, Y. Wang, RSC Adv. 4, 43612–43618 (2014)

    Article  Google Scholar 

  19. J.H. Hong PO-DA, H. Wu, J. Appl. Polym. Sci. 69, 2477–2486 (1998)

    Article  Google Scholar 

  20. X. Yang, L. Li, S. Shang, X.M. Tao, Polymer 51, 3431–3435 (2010)

    Article  Google Scholar 

  21. S.K. Sharma, J. Prakash, P.K. Pujari, Phys. Chem. Chem. Phys. 17, 29201–29209 (2015)

    Article  Google Scholar 

  22. Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Carbon 47, 3538–3543 (2009)

    Article  Google Scholar 

  23. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Karauchi, O. Kamigaito, Mater. Res. 8, 1185–1189 (1993)

    Article  ADS  Google Scholar 

  24. T. Tyler, O. Shenderova, G. Cunningham, J. Walsh, J. Drobnik, G. McGuire, Diam. Relat. Mater. 15, 2078–2081 (2006)

    Article  ADS  Google Scholar 

  25. C. Bao, Y. Guo, L. Song, Y. Hu, J. Mater. Chem. 21, 13942–13950 (2011)

    Article  Google Scholar 

  26. S. Gahlot, P.P. Sharma, V. Kulshrestha, P.K. Jha, A.C.S. Appl, Mater. Inter. 6, 5595–5601 (2014)

    Article  Google Scholar 

  27. L. Lu, H. Sun, F. Peng, Z. Jiang, J. Membr. Sci. 281, 245–252 (2006)

    Article  Google Scholar 

  28. Y. Chen, X. Zhang, P. Yu, Y. Ma, Chem. Commun. 30, 4527–4529 (2009)

    Article  Google Scholar 

  29. H.K. Cheng, N.G. Sahoo, Y.P. Tan, Y. Pan, H. Bao, L. Li, S.H. Chan, J. Zhao, A.C.S. Appl, Mater. Interfaces 4, 2387–2394 (2012)

    Article  Google Scholar 

  30. A.M. Shehap, Egypt. J. Solids 31, 75–91 (2008)

    Google Scholar 

  31. D.M. Sabara, J.S. Dunne, A.Q. Pedro, J. Trifunovic, I.I. Balogun, O. Kotlicic, A. Serrano, I. Kertesz, Biotechnol. Food Sci. 75, 39–49 (2011)

    Google Scholar 

  32. M.M. El-Nahass, M. Dongol, M. Abou-Zied, A. El-Denglawey, Physica B Condens Matter. 368, 179–187 (2005)

    Article  ADS  Google Scholar 

  33. I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, Mater. Chem. Phys. 139, 802–810 (2013)

    Article  Google Scholar 

  34. S.H. Wemple, M. DiDomenico Jr., Phys. Rev. B 3, 1338–1351 (1971)

    Article  ADS  Google Scholar 

  35. Z. Li, R.J. Young, I.A. Kinloch, ACS Appl. Mater. Interfaces. 5, 456–463 (2013)

    Article  Google Scholar 

  36. R.R. Tiwari, K.C. Khilar, U. Natarajan, J. Appl. Polym. Sci. 108, 1818–1828 (2008)

    Article  Google Scholar 

  37. J.B. Gao, M.E. Itkis, A.P. Yu, E. Bekyarova, B. Zhao, R.C. Haddon, J. Am. Chem. Soc. 127, 3847–3854 (2005)

    Article  Google Scholar 

  38. X. Zhao, Q. Zhang, D. Chen, P. Lu, Macromolecules 43, 2357–2363 (2010)

    Article  ADS  Google Scholar 

  39. S. Gong, M. Wu, L. Jiang, Q. Cheng, Mater. Res. Express 3, 075002 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Aslam or Zulfiqar Ali Raza.

Ethics declarations

Conflict of interest

The authors have no potential conflict of interest.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00339-017-1067-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M., Kalyar, M.A. & Raza, Z.A. Fabrication of reduced graphene oxide nanosheets doped PVA composite films for tailoring their opto-mechanical properties. Appl. Phys. A 123, 424 (2017). https://doi.org/10.1007/s00339-017-1035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1035-x

Keywords

Navigation