Skip to main content
Log in

Effect of Cu content on wear resistance and mechanical behavior of Ti–Cu binary alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Arc melting with nonconsumable tungsten electrode and water-cooled copper crucible was used to fabricate Ti–Cu binary alloys with different Cu contents in an argon atmosphere. The compositions and phase structures of the fabricated alloys were investigated by glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). Nanoindentation tests through continuous stiffness measurement were then performed at room temperature to analyze the mechanical behaviors of the alloys. Results indicated that the composition of each Ti–Cu binary alloy was Ti(100−x) Cu x (x = 43, 60, 69, and 74 at.%). The XRD analysis results showed that the alloys were composed of different phases, indicating that different Cu contents led to the variations in alloy hardness. The wear tests results revealed that elemental Cu positively affects the wear resistance properties of the Ti–Cu alloys. Nanoindentation testing results showed that the moduli of the Ti–Cu alloys were minimally changed at increasing Cu content, whereas their hardness evidently increased according to the wear test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.F. Marcinak, F.A. Young, M. Spector, J. Dent. Res 59, 472 (1980)

    Article  Google Scholar 

  2. M. Kikuchi, Y. Takada, S. Kiyosue, et al. Dent. Mater. 19, 174(2003).

    Article  Google Scholar 

  3. M. Taira, J.B. Moser, E.H. Greener, Dent. Mater. 5, 45 (1989).

    Article  Google Scholar 

  4. T.B. Massalski, J.L. Murray, L.H. Bennett, et al., in Binary alloy phase diagrams, ed. by H. Baker (ASM International, Metals Park, Ohio, 1987) p. 180.

  5. G. Lütjering, S. Weissmann, Metall. Mater. Trans. 1, 1641 (1970).

    Article  ADS  Google Scholar 

  6. S. Nagarjuna, M. Srinivas, K. Balasubramanian, et al. Math. Sci. Eng. A—Struct. 259, 34(1999).

    Article  Google Scholar 

  7. A.O.F. Hayama, P.N. Andrade, A. Cremasco et al., Mater. Des. 55, 1006 (2014)

    Article  Google Scholar 

  8. Y.Q. Zhao, W.L. Wu, H. Chang, Math. Sci. Eng. A—Struct. 416, 181(2006).

    Article  Google Scholar 

  9. C. Ohkubo, I. Shimura, T. Aoki et al., Biomaterials 24, 3377 (2003)

    Article  Google Scholar 

  10. W.R. Osório, A. Cremasco, P.N. Andrade et al., Electrochim. Acta 55, 759 (2010)

    Article  Google Scholar 

  11. M. Kikuchi, M. Takahashi, O. Okuno. Dent. Mater. 22, 641 (2006).

    Article  Google Scholar 

  12. J. Liu, F. Li, E. Zhang, et al. Math. Sci. Eng. C—Mater. 35, 392 (2014).

    Article  Google Scholar 

  13. E. Zhang, L. Zheng, J. Liu, et al. Mat. Sci. Eng. C—Mater. 46, 148 (2015).

    Article  Google Scholar 

  14. E. Zhang, F. Li, H. Y. Wang, et al. Math. Sci. Eng. C—Mater. 33, 4280 (2013).

    Article  Google Scholar 

  15. E. Zhang, X. Wang, M. Chen, et al. Mat. Sci. Eng. C—Mater. 69, 1210 (2016)

    Article  Google Scholar 

  16. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  ADS  Google Scholar 

  17. J.B. Pethica, W.C. Oliver, Phys. Scripta. 1987, 61 (2007)

    Google Scholar 

  18. G.M. Pharr, W.C. Oliver, F.R. Brotzen, J. Mater. Res. 7, 613 (1992)

    Article  ADS  Google Scholar 

  19. E. Pellicer, A. Varea, S. Pané et al., Adv. Funct. Mater 20, 983 (2010)

    Article  Google Scholar 

  20. F. Yang, K. Geng, P.K. Liaw et al., Acta Mater 55, 321 (2007)

    Article  Google Scholar 

  21. J. Musil, F. Kunc, H. Zeman, et al. Surf. Coat. Tech. 154, 304 (2002).

    Article  Google Scholar 

  22. J. Fornell, S. González, E. Rossinyol et al., Acta Mater 58, 6256 (2010)

    Article  Google Scholar 

  23. A. Leyland, A. Matthews, Wear, 246, 1 (2000).

    Article  Google Scholar 

  24. C. Rebholz, A. Leyland, J. M. Schneider, et al. Surf. Coat. Tech. 120, 412 (1999).

    Article  Google Scholar 

  25. M. Dao, L. Lu, R.J. Asaro, et al. Acta. Mater. 55, 4041 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11172195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Wang, H., Yuan, G. et al. Effect of Cu content on wear resistance and mechanical behavior of Ti–Cu binary alloys. Appl. Phys. A 123, 278 (2017). https://doi.org/10.1007/s00339-017-0921-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0921-6

Keywords

Navigation