Skip to main content
Log in

Labyrinthine and dendritic patterns in polyethylene oxide films grown by pulsed laser deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polyethylene oxide (PEO) films were grown by pulsed laser deposition using two different lasers: ArF (193 nm, 5 ns) and Nd:YAG (355 nm, 7 ns). Even though very similar experimental conditions have been applied to ablate identical targets, different surface morphologies and structures have been observed. Depending on laser fluence, labyrinthine patterns in PEO films have been formed when using 355 nm laser pulses at fluence values in the range 280–1000 mJ/cm2. The same material ablated by 193 nm excimer laser pulses at 200 mJ/cm2 fluence grows in dendritic morphologies. Both target and laser deposited materials have been thoroughly characterized using infrared spectroscopic, microscopic and X-ray analytical methods. Infrared spectroscopy demonstrated the close similarity of molecular chains for both target and film materials. X-ray diffraction analysis indicates polymer chain scissoring by ultraviolet irradiation, a fact also confirmed by size exclusion chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Reiter, I. Botiz, L. Graveleau, N. Grozev, K. Albrecht, A. Mourran, M. Moller, Morphologies of polymer crystals in thin films. Lect Notes Phys. 714, 179 (2007)

  2. C. M. Chen, S. Yang, Wrinkling instabilities in polymer films and their applications. Polym. Int. 64, 1041 (2012)

  3. L.J. Suggs, E.Y. Kao, L.L. Palombo, R.S. Krishnan, M.S. Widmer, A.G. Mikos, Polymers for Tissue Engineering, ed. by M.S. Shoichet, J. A. Hubbell (VSP, Utrecht, Netherlands, 1998), pp. 99–112

  4. C. M. Henry, Alternative methods for delivering drugs improve performance, convenience, and patient compliance. Chem. Eng. News 78, 49 (2000)

    Google Scholar 

  5. M.N. Mar, B.D. Ratner, S.S. Yee, An intrinsically protein-resistant surface plasmon resonance biosensor based upon a RF-plasma-deposited thin film. Sensors Actuators B 54, 125 (1999)

    Article  Google Scholar 

  6. D.S. Zhu, Y.X. Liu, A.C. Shi, E.Q. Chen, Morphology evolution in superheated crystal monolayer of low molecular weight poly(ethylene oxide) on mica surface. Polymer 47, 5239 (2006)

    Article  Google Scholar 

  7. G. Zhang, L. Jin, P. Zheng, A.-C. Shi, W. Wang, Labyrinthine pattern of polymer crystals from supercooled ultrathin films. Polymer 51, 554 (2010)

    Article  Google Scholar 

  8. H.-G. Braun, E. Meyer, Structure formation of ultrathin PEO films at solid interfaces-Complex pattern formation by dewetting and crystallization. Int. J. Mol. Sci 14, 3254 (2013)

    Article  Google Scholar 

  9. J. Roder, J. Faupel, H-U. Krebs, Growth of polymer–metal nanocomposites by pulsed laser deposition. Appl. Phys. A 93, 863 (2008)

    Article  ADS  Google Scholar 

  10. H-U. Krebs, M. Weisheit, J. Faupel, E. Suske, T. Scharf, C. Fuhse, M. Stormer, K. Sturm, M. Seibt, H. Kijewski, D. Nelke, E. Panchenko, M. Buback, Pulsed laser deposition. A versatile thin film technique. Adv. Solid State Phys. 43, 505 (2003)

  11. D.B. Chrisey, A. Pique, R.A. McGill, J.S. Horwitz, D.M. Bubb, P.K. Wu, B.R. Ringeisen, Laser deposition of polymer and biomaterial films. Chem. Rev 103, 553 (2003)

    Article  Google Scholar 

  12. S.T. Li, E. Arenholz, J. Heitz, D. Bäuerle, Pulsed laser deposition of crystalline Teflon (PTFE) films. Appl. Surf. Sci. 125, 17 (1998)

    Article  ADS  Google Scholar 

  13. E. Suske, T. Scharf, P. Schaaf, E. Panchenko, D. Nelke, M. Buback, H. Kijewski, H-U. Krebs, Variation of the mechanical properties of pulsed laser deposited PMMA films during annealing. Appl. Phys. A 79, 1295 (2004)

    Article  ADS  Google Scholar 

  14. D. M. Bubb, B. R. Ringeisen, J. H. Callahan, M. Galicia, A. Vertes, J. S. Horwitz, R. A. McGill, E. J. Houser, P. K. Wu, A. Pique, D. B. Chrisey, Vapor deposition of intact polyethylene glycol thin films. Appl. Phys. A 73, 121 (2001)

    Article  ADS  Google Scholar 

  15. H. Jeong, K.B. Shepard, G.E. Purdum, Y. Guo, Yueh-Lin Loo, C.B. Arnold, R.D. Priestley, Additive growth and crystallization of polymer films. Macromolecules 49, 2860 (2016)

    Article  ADS  Google Scholar 

  16. V. Karoutsos, I. Koutselas, P. Orfanou, Th. Mpatzaka, M. Vasileiadis, A. Vassilakopoulou, N. A. Vainos, A. Perrone, One-pot synthesis and transfer of PMMA/Ag photonic nanocomposites by pulsed laser deposition. Appl. Phys. A 120, 707 (2015)

    Article  ADS  Google Scholar 

  17. A. Lorusso, F. Gontad, A. Perrone, N. Stankova, Highlights on photocathodes based on thin films prepared by pulsed laser deposition. Phys. Rev. ST Accel. Beams 14, 090401 (2011)

    Article  ADS  Google Scholar 

  18. A.F. Miller, Materials science: exploiting wrinkle formation. Science 317, 605 (2007)

    Article  Google Scholar 

  19. J.S. Sharp, D. Vader, J.A. Forrest, M.I. Smith, M. Khomenko, K. Dalnoki-Veress, Spinodal wrinkling in thin film poly(ethylene oxide)/polystyrene bilayers. Eur. Phys. J. E 19, 423 (2006)

    Article  Google Scholar 

  20. J.S. Sharp, K.R. Thomas, M.P. Weir, Mechanically driven wrinkling instability in thin film polymer bilayers. Phys. Rev. E 75, 011601 (2007)

    Article  ADS  Google Scholar 

  21. N. Stoop, R. Lagrange, D. Terwagne, P.M. Reis, J. Dunkel, Curvature-induced symmetry breaking determines elastic surface patterns. Nat Mater 14, 337 (2015)

    Article  ADS  Google Scholar 

  22. A.C. Trindade, J.P. Canejo, L.F.V. Pinto, P. Patrício, P. Brogueira, P.I.C. Teixeira, M.H. Godinho, Wrinkling Labyrinth Patterns on Elastomeric Janus Particles. Macromolecules 44, 2220 (2011)

    Article  ADS  Google Scholar 

  23. Q. Wang, X. Zhao, A three-dimensional phase diagram of growth-induced surface instabilities. Sci Rep. doi:10.1038/srep08887 (2015)

  24. E.P. Chan, A.J. Crosby, Fabricating microlens arrays by surface wrinkling. Adv. Mater 18, 3238 (2006)

    Article  Google Scholar 

  25. J. Song, H. Jiang, Z.J. Liu, D.Y. Khang, Y. Huang, J.A. Rogers, C. Lu, C.G. Koh, Buckling of a stiff thin film on a compliant substrate in large deformation. Int. J. Solids Struct 45, 3107 (2008)

    Article  MATH  Google Scholar 

  26. D.M. Yu, G.L. Amidon, N.N. Weiner, A.H. Goldberg, Viscoelastic properties of Poly(ethy1ene oxide) Solution. J. Pharm. Sci. 83, 1443 (1994)

    Article  Google Scholar 

  27. W.H. Tuminello, T.A. Treat, A.D. English, Poly(tetrafluoroethylene): molecular weight distributions and chain stiffness. Macromolecules 21, 2606 (1988)

    Article  ADS  Google Scholar 

  28. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004)

  29. N. Gondaliya, D. K. Kanchan, P. Sharma, P. Joge, Structural and conductivity studies of poly(ethylene oxide)-silver triflate polymer electrolyte system. Mater. Sci. Appl. 2, 1639 (2001)

  30. I. Pucić, T. Jurkin, FTIR assessment of Poly(ethylene oxide) irradiated in solid state, melt and aqueous solution. Radiat. Phys. Chem. 81, 1426 (2012)

    Article  ADS  Google Scholar 

  31. Yao Tong, Yue Lin, Shanda Wang, Mo Song, A study of crystallisation of poly (ethylene oxide) and polypropylene on graphene surface. Polymer 73, 52 (2015)

    Article  Google Scholar 

  32. S.G. Hansen, T.E. Robitaille, Formation of polymer films by pulsed laser evaporation. Appl. Phys. Lett. 52, 81 (1988)

    Article  ADS  Google Scholar 

  33. E.F. Hare, W.A. Zisman, Autophobic liquids and the properties of their adsorbed films. J. Phys. Chem 59, 335 (1955)

    Article  Google Scholar 

  34. G. Reiter, J.-U. Sommer, Polymer crystallization in quasi-two dimensions. I. Experimental results. J. Chem. Phys. 112, 4376 (2000)

    Article  ADS  Google Scholar 

  35. G. Zhang, Y. Cao, L. Jin, P. Zheng, R.M. Van Horn, B. Lotz, S. Cheng, W. Wang, Crystal growth pattern changes in low molecular weight poly(ethylene oxide) ultrathin films. Polymer 52, 1133 (2011)

    Article  Google Scholar 

  36. M.V. Massa, K. Dalnoki-Veress, J.A. Forrest, Crystallization kinetics and crystal morphology in thin poly(ethylene oxide) films. Eur. Phys. J. E 11, 191 (2003)

    Google Scholar 

  37. X. Zhai, W. Wang, G. Zhang, B. He, Crystal, pattern formation and transitions of PEO monolayers on solid substrates from nonequilibrium to near equilibrium. Macromolecules 39, 324 (2006)

    Article  ADS  Google Scholar 

  38. P. Manoravi, M. Joseph, N. Sivakumar, Pulsed laser deposition of polyethylene oxide. J. Phys. Chem. Solids 59, 1271 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Thales, investing in knowledge society through the European Social Fund. Support by the Italian National Institute of Nuclear Physics (INFN) is acknowledged. Networking support of COST Action MP1205 is acknowledged. The authors thank very much A. Pispas and A. Meristoudi for the SEC analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Karoutsos or F. Gontad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karoutsos, V., Gontad, F., Kantarelis, S. et al. Labyrinthine and dendritic patterns in polyethylene oxide films grown by pulsed laser deposition. Appl. Phys. A 123, 270 (2017). https://doi.org/10.1007/s00339-017-0905-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0905-6

Keywords

Navigation