Skip to main content
Log in

Beta-manganese dioxide nanorods for sufficient high-temperature electromagnetic interference shielding in X-band

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

As the development of electronic and communication technology, electromagnetic interference (EMI) shielding and attenuation is an effective strategy to ensure the operation of the electronic devices. Among the materials for high-performance shielding in aerospace industry and related high-temperature working environment, the thermally stable metal oxide semiconductors with narrow band gap are promising candidates. In this work, beta-manganese dioxide (β-MnO2) nanorods were synthesized by a hydrothermal method. The bulk materials of the β-MnO2 were fabricated to evaluate the EMI shielding performance in the temperature range of 20–500 °C between 8.2 and 12.4 GHz (X-band). To understand the mechanisms of high-temperature EMI shielding, the contribution of reflection and absorption to EMI shielding was discussed based on temperature-dependent electrical properties and complex permittivity. Highly sufficient shielding effectiveness greater than 20 dB was observed over all the investigated range, suggesting β-MnO2 nanorods as promising candidates for high-temperature EMI shielding. The results have also established a platform to develop high-temperature EMI shielding materials based on nanoscale semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. Li, Y. Huang, F. Du, X.B. He, X. Lin, H.J. Gao et al., Nano. Lett. 6, 1141 (2006)

    Article  ADS  Google Scholar 

  2. D.D.L. Chung, Carbon 50, 3342 (2012)

    Article  Google Scholar 

  3. Q.M. Su, G. Zhong, J. Li, G.H. Du, B.S. Xu, Appl. Phys. A.106, 59 (2012)

    Article  ADS  Google Scholar 

  4. R. Han, H.B. Yi, J.Q. Wei, L. Qiao, T. Wang, F.S. Li, Appl. Phys. A. 108, 665 (2012)

    Article  ADS  Google Scholar 

  5. H.J. Wu, L.D. Wang, S.L. Guo, Z.Y. Shen, Appl. Phys. A 108, 439 (2012)

    Article  ADS  Google Scholar 

  6. Q.C. Liu, Z.F. Zi, D.J. Wu, Y.P. Sun, J.M. Dai, J. Mater. Sci. 47, 1033 (2012)

    Article  ADS  Google Scholar 

  7. Y.C. Qing, W.C. Zhou, S. Jia, F. Luo, D.M. Zhu, Appl. Phys. A 100, 1177 (2010)

    Article  ADS  Google Scholar 

  8. D.D.L. Chung, Carbon 39, 279 (2001)

    Article  Google Scholar 

  9. W.L. Song, M.S. Cao, M.M. Lu, J. Yang, H.F. Ju, Z.L. Hou et al., Nanotechnology 24, 115708 (2013)

    Article  ADS  Google Scholar 

  10. M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48, 788 (2010)

    Article  Google Scholar 

  11. M.H. Al-Saleh, U. Sundararaj, Carbon 47, 1738 (2009)

    Article  Google Scholar 

  12. S.D. Hutagalung, N.H. Sahrol, Z.A. Ahmad, M.F. Ain, M. Othman, Ceram. Int. 38, 671 (2012)

    Article  Google Scholar 

  13. M. Zhou, X. Zhang, J.M. Wei, S.L. Zhao, L. Wang, B.X. Feng, J. Phys. Chem. C 115, 1398 (2011)

    Article  Google Scholar 

  14. X.H. Wang, S.B. Ni, G. Zhou, X.L. Sun, F. Yang, J.M. Wang et al., Mater. Lett. 64, 1496 (2010)

    Article  Google Scholar 

  15. W.L. Song, M.S. Cao, Z.L. Hou, J. Yuan, X.Y. Fang, Scripta. Mater. 61, 201 (2009)

    Article  Google Scholar 

  16. X.L. Shi, M.S. Cao, X.Y. Fang, J. Yuan, Y.Q. Kang, W.L. Song, Appl. Phys. Lett. 93, 223112 (2008)

    Article  ADS  Google Scholar 

  17. P. Saini, V. Choudhary, N. Vijayan, R.K. Kotnala, J. Phys. Chem. C 116, 13403 (2012)

    Article  Google Scholar 

  18. A.P. Singh, P. Garg, F. Alam, K. Singh, R.B. Mathur, R.P. Tandon et al., Carbon 50, 3868 (2012)

    Article  Google Scholar 

  19. J.G. Park, J. Louis, Q. Cheng, J.W. Bao, J. Smithyman, R. Liang et al., Nanotechnology 20, 415702 (2009)

    Article  Google Scholar 

  20. A.B. Kaiser, Adv Mater 13, 927 (2001)

    Article  ADS  Google Scholar 

  21. S. Ramo, J.R. Whinnery, T.V. Duzer, Fields and Waves in Communication Electronics, 2nd edn. (John Wiley and Sons, New York, 1984)

    Google Scholar 

  22. E.C. Jordan, K.G. Balmain, Electromagnetic waves and radiating systems, 2nd edn. (Prentice-Hall, New Jersey, 1968)

    Google Scholar 

  23. W.L. Song, M.S. Cao, Z.L. Hou, X.Y. Fang, X.L. Shi, J. Yuan, Appl. Phys. Lett. 94, 233110 (2009)

    Article  ADS  Google Scholar 

  24. N.T. Correia, J.J.M. Ramos, Phys. Chem. Chem. Phys. 2, 5712 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports from 973 Project (2013CB934001), NSF of China (Grant Nos. 51172024, 51372022 and 51302011), China PSF (2012M520165) and the Fundamental Research Funds for the Central Universities (FRF-TP-13-036A) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Li Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, WL., Cao, MS., Hou, ZL. et al. Beta-manganese dioxide nanorods for sufficient high-temperature electromagnetic interference shielding in X-band. Appl. Phys. A 116, 1779–1783 (2014). https://doi.org/10.1007/s00339-014-8327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8327-1

Keywords

Navigation