Skip to main content

Advertisement

Log in

A retrospective external validation study of the Birmingham Atypical Cartilage Tumour Imaging Protocol (BACTIP) for the management of solitary central cartilage tumours of the proximal humerus and around the knee

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to externally validate the Birmingham Atypical Cartilage Tumour Imaging Protocol (BACTIP) recommendations for differentiation/follow-up of central cartilage tumours (CCTs) of the proximal humerus, distal femur, and proximal tibia and to propose BACTIP adaptations if the results provide new insights.

Methods

MRIs of 123 patients (45 ± 11 years, 37 men) with an untreated CCT with MRI follow-up (n = 62) or histopathological confirmation (n = 61) were retrospectively/consecutively included and categorised following the BACTIP (2003–2020 / Ghent University Hospital/Belgium). Tumour length and endosteal scalloping differences between enchondroma, atypical cartilaginous tumour (ACT), and high-grade chondrosarcoma (CS II/III/dedifferentiated) were evaluated. ROC-curve analysis for differentiating benign from malignant CCTs and for evaluating the BACTIP was performed.

Results

For lesion length and endosteal scalloping, ROC-AUCs were poor and fair-excellent, respectively, for differentiating different CCT groups (0.59–0.69 versus 0.73–0.91). The diagnostic performance of endosteal scalloping and the BACTIP was higher than that of lesion length. A 1° endosteal scalloping cut-off differentiated enchondroma from ACT + high-grade chondrosarcoma with a sensitivity of 90%, reducing the potential diagnostic delay. However, the specificity was 29%, inducing overmedicalisation (excessive follow-up). ROC-AUC of the BACTIP was poor for differentiating enchondroma from ACT (ROC-AUC = 0.69; 95%CI = 0.51–0.87; p = 0.041) and fair-good for differentiation between other CCT groups (ROC-AUC = 0.72–0.81). BACTIP recommendations were incorrect/unsafe in five ACTs and one CSII, potentially inducing diagnostic delay. Eleven enchondromas received unnecessary referrals/follow-up.

Conclusion

Although promising as a useful tool for management/follow-up of CCTs of the proximal humerus, distal femur, and proximal tibia, five ACTs and one chondrosarcoma grade II were discharged, potentially inducing diagnostic delay, which could be reduced by adapting BACTIP cut-off values.

Clinical relevance statement

Mostly, Birmingham Atypical Cartilage Tumour Imaging Protocol (BACTIP) assesses central cartilage tumours of the proximal humerus and the knee correctly. Both when using the BACTIP and when adapting cut-offs, caution should be taken for the trade-off between underdiagnosis/potential diagnostic delay in chondrosarcomas and overmedicalisation in enchondromas.

Key Points

• This retrospective external validation confirms the Birmingham Atypical Cartilage Tumour Imaging Protocol as a useful tool for initial assessment and follow-up recommendation of central cartilage tumours in the proximal humerus and around the knee in the majority of cases.

• Using only the Birmingham Atypical Cartilage Tumour Imaging Protocol, both atypical cartilaginous tumours and high-grade chondrosarcomas (grade II, grade III, and dedifferentiated chondrosarcomas) can be misdiagnosed, excluding them from specialist referral and further follow-up, thus creating a potential risk of delayed diagnosis and worse prognosis.

• Adapted cut-offs to maximise detection of atypical cartilaginous tumours and high-grade chondrosarcomas, minimise underdiagnosis and reduce potential diagnostic delay in malignant tumours but increase unnecessary referral and follow-up of benign tumours.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

°:

Degree

2D/3D:

Two-/three-dimensional

ACT:

Atypical cartilaginous tumour

ADC:

Apparent diffusion coefficient

AUC:

Area-under-the-curve

BACTIP:

Birmingham Atypical Cartilage Tumour Imaging Protocol

CCT:

Central cartilage tumour

cm:

Centimetre

CS:

Chondrosarcoma

DCE:

Dynamic contrast-enhanced

DDCS:

Dedifferentiated chondrosarcoma

DWI:

Diffusion-weighted imaging

ETL:

Echo train length

FOV:

Field-of-view

HP:

Histopathological

ICC:

Intraclass correlation coefficient

IQR:

Interquartile range

IVIM:

Intravoxel incoherent motion

Kep:

Rate constant

Ktrans:

Volume transfer constant

mm:

Millimetre

ms:

Millisecond

n:

Number

NA:

Not available

NPV:

Negative predictive value

PD:

Proton density

PPV:

Positive predictive value

Q:

Quartile

ROC:

Receiver operating characteristic

SD:

Standard deviation

SUVmax:

Maximum standardised uptake value

T:

Tesla

T1:

T1-weighted

T2:

T2-weighted

TE:

Echo time

TI:

Inversion time

TR:

Repetition time

References

  1. Deckers C, de Rooy JWJ, Flucke U et al (2021) Midterm MRI follow-up of untreated enchondroma and atypical cartilaginous tumors in the long bones. Cancers (Basel). https://doi.org/10.3390/cancers13164093

    Article  PubMed  Google Scholar 

  2. Deng XY, Chen HY, Yu JN et al (2021) Diagnostic value of CT- and MRI-based texture analysis and imaging findings for grading cartilaginous tumors in long bones. Front Oncol. https://doi.org/10.3389/fonc.2021.700204

    Article  PubMed  PubMed Central  Google Scholar 

  3. Patel A, Davies AM, Botchu R et al (2019) A pragmatic approach to the imaging and follow-up of solitary central cartilage tumours of the proximal humerus and knee. Clin Radiol. https://doi.org/10.1016/j.crad.2019.01.025

    Article  PubMed  Google Scholar 

  4. Sharif B, Lindsay D, Saifuddin A (2021) The role of imaging in differentiating low-grade and high-grade central chondral tumours. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2021.109579

    Article  PubMed  Google Scholar 

  5. Sharif B, Lindsay D, Saifuddin A (2022) Update on the imaging features of the enchondromatosis syndromes. Skeletal Radiol. https://doi.org/10.1007/s00256-021-03870-0

    Article  PubMed  Google Scholar 

  6. Davies AM, Patel A, James SL, Botchu R (2019) A retrospective validation of an imaging protocol for the management of solitary central cartilage tumours of the proximal humerus and around the knee. Clin Radiol. https://doi.org/10.1016/j.crad.2019.08.017

    Article  PubMed  Google Scholar 

  7. Shemesh SS, Acevedo-Nieves JD, Pretell-Mazzini J (2018) Treatment strategies for central low-grade chondrosarcoma of long bones: a systematic review of the literature and meta-analysis. Musculoskelet Surg. https://doi.org/10.1007/s12306-017-0507-7

    Article  PubMed  Google Scholar 

  8. Soldatos T, McCarthy EF, Attar S et al (2011) Imaging features of chondrosarcoma. J Comput Assist Tomogr. https://doi.org/10.1097/RCT.0b013e31822048ff

    Article  PubMed  Google Scholar 

  9. Sullivan CW, Kazley JM, Murtaza H et al (2020) Team approach: evaluation and management of low-grade cartilaginous lesions. JBJS Rev. https://doi.org/10.2106/JBJS.RVW.19.00054

    Article  PubMed  Google Scholar 

  10. Parlier-Cuau C, Bousson V, Ogilvie CM et al (2011) When should we biopsy a solitary central cartilaginous tumor of long bones? Literature review and management proposal. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2010.06.051

    Article  PubMed  Google Scholar 

  11. Sampath Kumar V, Tyrrell PNM, Singh J et al (2016) Surveillance of intramedullary cartilage tumours in long bones. Bone Jt J. https://doi.org/10.1302/0301-620X.98B11.37864

    Article  Google Scholar 

  12. Murphey MD, Flemming DJ, Boyea SR et al (1998) From the archives of the AFIP. Enchondroma versus chondrosarcoma in the appendicular skeleton: differentiating features. Radiographics.https://doi.org/10.1148/radiographics.18.5.9747616

  13. Douis H, Singh L, Saifuddin A (2014) MRI differentiation of low-grade from high-grade appendicular chondrosarcoma. Eur Radiol. https://doi.org/10.1007/s00330-013-3003-y

    Article  PubMed  Google Scholar 

  14. Aoki J, Sone S, Fujioka F et al (1991) MR of enchondroma and chondrosarcoma. J Comput Assist Tomogr. https://doi.org/10.1097/00004728-199111000-00021

    Article  PubMed  Google Scholar 

  15. De Coninck T, Jans L, Sys G et al (2013) Dynamic contrast-enhanced MR imaging for differentiation between enchondroma and chondrosarcoma. Eur Radiol. https://doi.org/10.1007/s00330-013-2913-z

    Article  PubMed  Google Scholar 

  16. Lee FYI, Yu J, Chang SS et al (2004) Diagnostic value and limitations of fluorine-18 fluorodeoxyglucose positron emission tomography for cartilaginous tumors of bone. J Bone Jt Surg. https://doi.org/10.2106/00004623-200412000-00014

    Article  Google Scholar 

  17. Subhawong TK, Winn A, Shemesh SS, Pretell-Mazzini J (2017) F-18 FDG PET differentiation of benign from malignant chondroid neoplasms: a systematic review of the literature. Skeletal Radiol. https://doi.org/10.1007/s00256-017-2685-7

    Article  PubMed  Google Scholar 

  18. Geirnaardt MUA, Hermans J, Bloem JL et al (1997) Usefulness of radiography in differentiating enchondroma from central grade I chondrosarcoma. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.169.4.9308471

    Article  Google Scholar 

  19. Douis H, Parry M, Vaiyapuri S, Davies AM (2018) What are the differentiating clinical and MRI-features of enchondromas from low-grade chondrosarcomas? Eur Radiol. https://doi.org/10.1007/s00330-017-4947-0

    Article  PubMed  Google Scholar 

  20. Crim J, Schmidt R, Layfield L et al (2015) Can imaging criteria distinguish enchondroma from grade 1 chondrosarcoma? Eur J Radiol. https://doi.org/10.1016/j.ejrad.2015.06.033

    Article  PubMed  Google Scholar 

  21. Afonso PD, Isaac A, Villagrán JM (2019) Chondroid tumors as incidental findings and differential diagnosis between enchondromas and low-grade chondrosarcomas. Semin Musculoskelet Radiol. https://doi.org/10.1055/s-0038-1675550

    Article  PubMed  Google Scholar 

  22. Schumacher KM, Damron TA (2022) Evaluation of triage tool for low-grade cartilage tumors: Four-quadrant approach. J Surg Oncol. https://doi.org/10.1002/jso.26699

    Article  PubMed  Google Scholar 

  23. Deckers C, Steyvers MJ, Hannink G et al (2020) Can MRI differentiate between atypical cartilaginous tumors and high-grade chondrosarcoma? A systematic review. Acta Orthop. https://doi.org/10.1080/17453674.2020.1763717

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brien EW, Mirra JM, Luck J V (1999) Benign and malignant cartilage tumors of bone and joint: their anatomic and theoretical basis with an emphasis on radiology, pathology and clinical biology. II. Juxtacortical cartilage tumors. Skeletal Radiol. https://doi.org/10.1007/s002560050466

  25. Deckers C, Schreuder BHW, Hannink G et al (2016) Radiologic follow-up of untreated enchondroma and atypical cartilaginous tumors in the long bones. J Surg Oncol. https://doi.org/10.1002/jso.24465

    Article  PubMed  PubMed Central  Google Scholar 

  26. Herget GW, Kontny U, Saueressig U et al (2013) Osteochondrom und multiple Osteochondrome: Empfehlungen zur Diagnostik und Vorsorge unter besonderer Berücksichtigung des Auftretens sekundärer Chondrosarkome. Radiologe. https://doi.org/10.1007/s00117-013-2571-9

    Article  PubMed  Google Scholar 

  27. Vanel D, Kreshak J, Larousserie F et al (2013) Enchondroma vs. chondrosarcoma: a simple, easy-to-use, new magnetic resonance sign. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2011.11.043

  28. Ferrer-Santacreu EM, Ortiz-Cruz EJ, González-López JM, Fernández EP (2012) Enchondroma versus low-grade chondrosarcoma in appendicular skeleton: clinical and radiological criteria. J Oncol. https://doi.org/10.1155/2012/437958

    Article  PubMed  PubMed Central  Google Scholar 

  29. Logie C, Walker E, Forsberg J et al (2013) Chondrosarcoma: a diagnostic imager’s guide to decision making and patient management. Semin Musculoskelet Radiol. https://doi.org/10.1055/s-0033-1342967

    Article  PubMed  Google Scholar 

  30. Davies AM, Patel A, Botchu R et al (2021) The changing face of central chondrosarcoma of bone. One UK-based orthopaedic oncology unit’s experience of 33 years referrals. J Clin Orthop Trauma. https://doi.org/10.1016/j.jcot.2021.02.017

  31. WHO Classification of Tumours Editorial Board and International Agency for Research on Cancer (2020) Soft Tissue and Bone Tumours - WHO Classification of Tumours (Medicine), 5th ed. ISBN: 978–92–832–4502–5

  32. Cicchetti DV (1994) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. https://doi.org/10.1037/1040-3590.6.4.284

    Article  Google Scholar 

  33. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hwang S, Hameed M, Kransdorf M (2023) The 2020 World Health Organization classification of bone tumors: what radiologists should know. Skeletal Radiol. https://doi.org/10.1007/s00256-022-04093-7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deckers C, van Zeijl NT, van Hooff ML et al (2023) Active surveillance of atypical cartilaginous tumours of bone: short term quality of life measurements. J Orthop Surg Res. https://doi.org/10.1186/s13018-023-03694-9

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mulligan ME (2019) How to diagnose enchondroma, bone infarct, and chondrosarcoma. Curr Probl Diagn Radiol. https://doi.org/10.1067/j.cpradiol.2018.04.002

    Article  PubMed  Google Scholar 

  37. Gassert FG, Breden S, Neumann J et al (2022) Differentiating enchondromas and atypical cartilaginous tumors in long bones with computed tomography and magnetic resonance imaging. Diagnostics. https://doi.org/10.3390/diagnostics12092186

    Article  PubMed  PubMed Central  Google Scholar 

  38. Janzen L, Logan PM, O’Connell JX et al (1997) Intramedullary chondroid tumors of bone: Correlation of abnormal peritumoral marrow and soft-tissue MRI signal with tumor type. Skeletal Radiol. https://doi.org/10.1007/s002560050201

    Article  PubMed  Google Scholar 

  39. Douis H, Jeys L, Grimer R et al (2015) Is there a role for diffusion-weighted MRI (DWI) in the diagnosis of central cartilage tumors? Skeletal Radiol. https://doi.org/10.1007/s00256-015-2123-7

    Article  PubMed  Google Scholar 

  40. Rao A, Sharma C, Parampalli R (2019) Role of diffusion-weighted MRI in differentiating benign from malignant bone tumors. BJR Open. https://doi.org/10.1259/bjro.20180048

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jin B, Yang J, Zhen J et al (2023) Intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging can differentiate between atypical cartilaginous tumors and high-grade chondrosarcoma: correlation with histological vessel characteristics. J Comput Assist Tomogr. https://doi.org/10.1097/RCT.0000000000001515

    Article  PubMed  PubMed Central  Google Scholar 

  42. Purandare NC, Puranik A, Shah S et al (2019) Can 18F-FDG PET/CT diagnose malignant change in benign chondroid tumors? Nucl Med Commun. https://doi.org/10.1097/MNM.0000000000001015

    Article  PubMed  Google Scholar 

  43. Gundavda MK, Agarwal MG, Singh N et al (2022) Can 18F-FDG PET/CT alone or combined with radiology be used to reliably grade cartilage bone neoplasms for surgical decision making? Nucl Med Commun. https://doi.org/10.1097/MNM.0000000000001498

    Article  PubMed  Google Scholar 

  44. Engel H, Herget GW, Füllgraf H et al (2021) Chondrogenic bone tumors: the importance of imaging characteristics. Rofo. https://doi.org/10.1055/a-1288-1209

    Article  PubMed  Google Scholar 

  45. Zhang Q, Xi Y, Li D et al (2020) The utility of 18F-FDG PET and PET/CT in the diagnosis and staging of chondrosarcoma: a meta-analysis. J Orthop Surg Res. https://doi.org/10.1186/s13018-020-01748-w

    Article  PubMed  PubMed Central  Google Scholar 

  46. Annovazzi A, Anelli V, Zoccali C et al (2019) 18F-FDG PET/CT in the evaluation of cartilaginous bone neoplasms: the added value of tumor grading. Ann Nucl Med. https://doi.org/10.1007/s12149-019-01392-3

    Article  PubMed  Google Scholar 

  47. Johnson JD, Rainer WG, Rose PS, Houdek MT (2020) Utility of bone scintigraphy and PET-CT in the surgical staging of skeletal chondrosarcoma. Anticancer Res. https://doi.org/10.21873/anticanres.14588

  48. Gitto S, Cuocolo R, van Langevelde K et al (2022) MRI radiomics-based machine learning classification of atypical cartilaginous tumour and grade II chondrosarcoma of long bones. EBioMedicine. https://doi.org/10.1016/j.ebiom.2021.103757

    Article  PubMed  Google Scholar 

  49. Gitto S, Cuocolo R, Albano D et al (2020) MRI radiomics-based machine-learning classification of bone chondrosarcoma. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2020.109043

    Article  PubMed  Google Scholar 

  50. Gitto S, Cuocolo R, Annovazzi A et al (2021) CT radiomics-based machine learning classification of atypical cartilaginous tumours and appendicular chondrosarcomas. EBioMedicine. https://doi.org/10.1016/j.ebiom.2021.103407

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhong J, Hu Y, Ge X et al (2023) A systematic review of radiomics in chondrosarcoma: assessment of study quality and clinical value needs handy tools. Eur Radiol. https://doi.org/10.1007/s00330-022-09060-3

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cilengir AH, Evrimler S, Serel TA et al (2023) The diagnostic value of magnetic resonance imaging-based texture analysis in differentiating enchondroma and chondrosarcoma. Skeletal Radiol. https://doi.org/10.1007/s00256-022-04242-y

    Article  PubMed  Google Scholar 

  53. Pan J, Zhang K, Le H et al (2021) Radiomics nomograms based on non-enhanced MRI and clinical risk factors for the differentiation of chondrosarcoma from enchondroma. J Magn Reson Imaging. https://doi.org/10.1002/jmri.27690

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lisson CS, Lisson CG, Flosdorf K et al (2018) Diagnostic value of MRI-based 3D texture analysis for tissue characterisation and discrimination of low-grade chondrosarcoma from enchondroma: a pilot study. Eur Radiol. https://doi.org/10.1007/s00330-017-5014-6

    Article  PubMed  Google Scholar 

  55. Eefting D, Schrage YM, Geirnaerdt MJA et al (2009) Assessment of interobserver variability and histologic parameters to improve reliability in classification and grading of central cartilaginous tumors. Am J Surg Pathol. https://doi.org/10.1097/PAS.0b013e31817eec2b

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Heleen Coreelman (MSc in Biochemistry and Biotechnology, MSc in Forensic Science) for the editing of Fig. 1 and for proofreading the final version of the manuscript. They would also like to thank the pathology department of the Ghent University Hospital (Belgium) for their technical support and Griet Alleman (BSc Radiographer, Study Coordinator, Ghent University Hospital, Ghent, Belgium) for data collection and study management.

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Van Den Berghe.

Ethics declarations

Guarantor

The senior scientific guarantor of this publication is the head of the research unit, Koenraad L. Verstraete (MD, PhD, Full Professor of Radiology).

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

Two of the authors, Thomas Van Den Berghe (MD, PhD Researcher) and Esther Candries (MSc), have significant statistical expertise. Nevertheless, no complex statistical methods were necessary for this manuscript.

Informed consent

Written informed consent was waived by the Ethical Committee (Institutional Review Board) for this retrospective study involving human participants. For this type of study, formal consent is not required.

Ethical approval

Institutional Review Board approval was obtained (BC-08631 E01). All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Study subjects or cohorts overlap

No study subjects or cohorts have been previously reported in other articles.

Methodology

• retrospective

• diagnostic or prognostic study

• performed at one institution

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Both first authors (T.V.D.B. and F.D.) contributed equally to this work and share first authorship status for this research paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 307 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Den Berghe, T., Delbare, F., Candries, E. et al. A retrospective external validation study of the Birmingham Atypical Cartilage Tumour Imaging Protocol (BACTIP) for the management of solitary central cartilage tumours of the proximal humerus and around the knee. Eur Radiol (2024). https://doi.org/10.1007/s00330-024-10604-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00330-024-10604-y

Keywords

Navigation