Skip to main content
Log in

Amide proton transfer–weighted MRI can detect tissue acidosis and monitor recovery in a transient middle cerebral artery occlusion model compared with a permanent occlusion model in rats

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess whether increases in amide proton transfer (APT)–weighted signal reflect the effects of tissue recovery from acidosis using transient rat middle cerebral artery occlusion (MCAO) models, compared to permanent occlusion models.

Materials and methods

Twenty-four rats with MCAO (17 transient and seven permanent occlusions) were prepared. APT-weighted signal (APTw), apparent diffusion coefficient (ADC), cerebral blood flow (CBF), and MR spectroscopy were evaluated at three stages in each group (occlusion, reperfusion/1 h post-occlusion, and 3 h post-reperfusion/4 h post-occlusion). Deficit areas showing 30% reduction to the contralateral side were measured. Temporal changes were compared with repeated measures of analysis of variance. Relationship between APTw and lactate concentration was calculated.

Results

Both APTw and CBF values increased and APTw deficit area reduced at reperfusion (largest p = .002) in transient occlusion models, but this was not demonstrated in permanent occlusion. No significant temporal change was demonstrated with ADC at reperfusion. APTw deficit area was between ADC and CBF deficit areas in transient occlusion model. APTw correlated with lactate concentration at occlusion (r = − 0.49, p = .04) and reperfusion (r = − 0.32, p = .02).

Conclusions

APTw values increased after reperfusion and correlated with lactate content, which suggests that APT-weighted MRI could become a useful imaging technique to reflect tissue acidosis and its reversal.

Key Points

APT-weighted signal increases in the tissue reperfusion, while remains stable in the permanent occlusion.

• APTw deficit area was between ADC and CBF deficit areas in transient occlusion model, possibly demonstrating metabolic penumbra.

• APTw correlated with lactate concentration during ischemia and reperfusion, indicating tissue acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

APTw:

Amide proton transfer–weighted signal

CBF:

Cerebral blood flow

MCAO:

Middle cerebral artery occlusion

References

  1. Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev 83:1183–1221

    Article  CAS  PubMed  Google Scholar 

  2. Zhou J, Wilson DA, Sun PZ, Klaus JA, Van Zijl PC (2004) Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med 51:945–952

    Article  CAS  PubMed  Google Scholar 

  3. Zhou JY, Payen JF, Wilson DA, Traystman RJ, van Zijl PC (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090

    Article  CAS  PubMed  Google Scholar 

  4. Sun PZ, Zhou J, Sun W, Huang J, van Zijl PC (2007) Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab 27:1129–1136

    Article  PubMed  Google Scholar 

  5. Zheng Y, Wang XM (2017) Measurement of lactate content and amide proton transfer values in the basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model using MRI. AJNR Am J Neuroradiol 38:827–834

    Article  CAS  PubMed  Google Scholar 

  6. Song G, Li C, Luo X et al (2017) Evolution of cerebral ischemia assessed by amide proton transfer-weighted MRI. Front Neurol 8:67

    PubMed  PubMed Central  Google Scholar 

  7. Zhou J, van Zijl PC (2011) Defining an acidosis-based ischemic penumbra from pH-weighted MRI. Transl Stroke Res 3:76–83

    Article  PubMed  PubMed Central  Google Scholar 

  8. Heo HY, Zhang Y, Burton TM et al (2017) Improving the detection sensitivity of pH-weighted amide proton transfer MRI in acute stroke patients using extrapolated semisolid magnetization transfer reference signals. Magn Reson Med 78:871–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zong X, Wang P, Kim SG, Jin T (2014) Sensitivity and source of amine-proton exchange and amide-proton transfer magnetic resonance imaging in cerebral ischemia. Magn Reson Med 71:118–132

    Article  CAS  PubMed  Google Scholar 

  10. Sun PZ, Murata Y, Lu J, Wang X, Lo EH, Sorensen AG (2008) Relaxation-compensated fast multislice amide proton transfer (APT) imaging of acute ischemic stroke. Magn Reson Med 59:1175–1182

    Article  PubMed  Google Scholar 

  11. Sun PZ, Benner T, Kumar A, Sorensen AG (2008) Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med 60:834–841

    Article  PubMed  Google Scholar 

  12. Sun PZ, Benner T, Copen WA, Sorensen AG (2010) Early experience of translating pH-weighted MRI to image human subjects at 3 tesla. Stroke 41:S147–S151

    Article  PubMed  PubMed Central  Google Scholar 

  13. Campbell BC, Mitchell PJ, Kleinig TJ et al (2015) Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 372:1009–1018

    Article  CAS  Google Scholar 

  14. Jokivarsi KT, Hiltunen Y, Tuunanen PI, Kauppinen RA, Grohn OH (2010) Correlating tissue outcome with quantitative multiparametric MRI of acute cerebral ischemia in rats. J Cereb Blood Flow Metab 30:415–427

    Article  PubMed  Google Scholar 

  15. Dani KA, Warach S (2014) Metabolic imaging of ischemic stroke: the present and future. AJNR Am J Neuroradiol 35:S37–S43

    Article  CAS  PubMed  Google Scholar 

  16. Kidwell CS, Saver JL, Mattiello J et al (2000) Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol 47:462–469

    Article  CAS  PubMed  Google Scholar 

  17. Weiss HR, Grayson J, Liu X, Barsoum S, Shah H, Chi OZ (2013) Cerebral ischemia and reperfusion increases the heterogeneity of local oxygen supply/consumption balance. Stroke 44:2553–2558

    Article  CAS  PubMed  Google Scholar 

  18. Tietze A, Blicher J, Mikkelsen IK et al (2014) Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI. NMR Biomed 27:163–174

    Article  PubMed  Google Scholar 

  19. Kilkenny C, Altman DG (2010) Improving bioscience research reporting: ARRIVE-ing at a solution. Lab Anim 44:377–378

    Article  CAS  Google Scholar 

  20. Isayama K, Pitts LH, Nishimura MC (1991) Evaluation of 2,3,5-triphenyltetrazolium chloride staining to delineate rat brain infarcts. Stroke 22:1394–1398

    Article  CAS  PubMed  Google Scholar 

  21. Sun PZ, Farrar CT, Sorensen AG (2007) Correction for artifacts induced by B(0) and B(1) field inhomogeneities in pH-sensitive chemical exchange saturation transfer (CEST) imaging. Magn Reson Med 58:1207–1215

    Article  PubMed  Google Scholar 

  22. Guivel-Scharen V, Sinnwell T, Wolff SD, Balaban RS (1998) Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 133:36–45

    Article  CAS  PubMed  Google Scholar 

  23. Keupp J, Baltes C, Harvey P, van den Brink J (2011) Parallel RF transmission based MRI technique for highly sensitive detection of amide proton transfer in the human brain at 3T. In: Proc Intl Soc Mag Reson Med 19

  24. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198

    Article  CAS  PubMed  Google Scholar 

  25. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  CAS  Google Scholar 

  26. Zhang XY, Wang F, Jin T et al (2017) MR imaging of a novel NOE-mediated magnetization transfer with water in rat brain at 9.4 T. Magn Reson Med 78:588–597

    Article  CAS  PubMed  Google Scholar 

  27. Shen Q, Meng X, Fisher M, Sotak CH, Duong TQ (2003) Pixel-by-pixel spatiotemporal progression of focal ischemia derived using quantitative perfusion and diffusion imaging. J Cereb Blood Flow Metab 23:1479–1488

    Article  PubMed  PubMed Central  Google Scholar 

  28. Leigh R, Knutsson L, Zhou J, van Zijl PC (2017) Imaging the physiological evolution of the ischemic penumbra in acute ischemic stroke. J Cereb Blood Flow Metab 38:1500–1516

  29. Harada K, Honmou O, Liu H, Bando M, Houkin K, Kocsis JD (2007) Magnetic resonance lactate and lipid signals in rat brain after middle cerebral artery occlusion model. Brain Res 1134:206–213

    Article  CAS  PubMed  Google Scholar 

  30. Orlowski P, Chappell M, Park CS, Grau V, Payne S (2011) Modelling of pH dynamics in brain cells after stroke. Interface Focus 1:408–416

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee D, Zhao X, Heo H, Zhang Y, Jiang S, Zhou J (2016) Dynamic changes of amide proton transfer (APT) and multi-parametric MR signals in transient focal ischemia in rats. In: Proc 24th Annual Meeting ISMRM Singapore

  32. An HY, Ford AL, Chen YS et al (2015) Defining the ischemic penumbra using magnetic resonance oxygen metabolic index. Stroke 46:982–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pan J, Konstas AA, Bateman B, Ortolano GA, Pile-Spellman J (2007) Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies. Neuroradiology 49:93–102

    Article  Google Scholar 

  34. Bivard A, Krishnamurthy V, Stanwell P et al (2014) Spectroscopy of reperfused tissue after stroke reveals heightened metabolism in patients with good clinical outcomes. J Cereb Blood Flow Metab 34:1944–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wey HY, Desai VR, Duong TQ (2013) A review of current imaging methods used in stroke research. Neurol Res 35:1092–1102

    Article  PubMed  PubMed Central  Google Scholar 

  36. Obrenovitch TP (1995) The ischaemic penumbra: twenty years on. Cerebrovasc Brain Metab Rev 7:297–323

    CAS  PubMed  Google Scholar 

  37. Thornton JS, Ordidge RJ, Penrice J et al (1998) Temporal and anatomical variations of brain water apparent diffusion coefficient in perinatal cerebral hypoxic-ischemic injury: relationships to cerebral energy metabolism. Magn Reson Med 39:920–927

    Article  CAS  PubMed  Google Scholar 

  38. Xue R, Sawada M, Goto S et al (2001) Rapid three-dimensional diffusion MRI facilitates the study of acute stroke in mice. Magn Reson Med 46:183–188

    Article  CAS  PubMed  Google Scholar 

  39. Dijkhuizen RM, Knollema S, van der Worp HB et al (1998) Dynamics of cerebral tissue injury and perfusion after temporary hypoxia-ischemia in the rat: evidence for region-specific sensitivity and delayed damage. Stroke 29:695–704

    Article  CAS  PubMed  Google Scholar 

  40. Yamasaki F, Takaba J, Ohtaki M et al (2005) Detection and differentiation of lactate and lipids by single-voxel proton MR spectroscopy. Neurosurg Rev 28:267–277

    Article  PubMed  Google Scholar 

  41. Heo HY, Zhang Y, Lee DH, Hong X, Zhou J (2016) Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semi-solid magnetization transfer reference (EMR) signals: application to a rat glioma model at 4.7 tesla. Magn Reson Med 75:137–149

    Article  CAS  PubMed  Google Scholar 

  42. Heo HY, Zhang Y, Jiang S, Lee DH, Zhou J (2016) Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3 tesla. Magn Reson Med 75:1630–1639

    Article  CAS  PubMed  Google Scholar 

  43. Dula AN, Smith SA, Gore JC (2013) Application of chemical exchange saturation transfer (CEST) MRI for endogenous contrast at 7 tesla. J Neuroimaging 23:526–532

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by a grant (2016-690) from the Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Sung Kim.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dong Cheol Woo.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

We thank Seon Ok Kim for his expertise in statistical analysis.

Informed consent

Approval from the institutional animal care committee was obtained.

Ethical approval

This study was approved by the Institutional Animal Care and Use Committee of Asan Medical Center.

Methodology

• retrospective

• cross-sectional

• performed at one institution

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.E., Jung, S.C., Kim, H.S. et al. Amide proton transfer–weighted MRI can detect tissue acidosis and monitor recovery in a transient middle cerebral artery occlusion model compared with a permanent occlusion model in rats. Eur Radiol 29, 4096–4104 (2019). https://doi.org/10.1007/s00330-018-5964-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-018-5964-3

Keywords

Navigation