Skip to main content
Log in

Diabetes risk assessment with imaging: a radiomics study of abdominal CT

  • Computed Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To identify CT markers for screening of early type 2 diabetes and assessment of the risk of incident diabetes using a radiomics method.

Methods

The medical records of 26,947 inpatients were reviewed. A total of 690 patients were selected and allocated to a primary cohort, a validation cohort, and a prediction cohort and used to build prediction models for diabetes. Three radiomics signatures were constructed using CT image features extracted from three regions of interest, i.e., in the pancreas, liver, and psoas major muscle. By incorporating radiomics signatures and other markers, we built a radiomics nomogram that could be used to screen for early diabetes and predict future diabetes.

Results

Of the three abdominal organs for which radiomics signature were constructed, that of the pancreas showed the best discriminatory power for early diabetes screening and prediction (C-statistics of 0.833, 0.846, and 0.899 for the primary cohort, validation cohort, and prediction cohort, respectively). The sensitivity and specificity of the nomogram for prediction of 3-year incident diabetes were 0.827 and 0.807, respectively.

Conclusions

This study presents alternative radiomics markers that have potential for use in screening for undiagnosed type 2 diabetes and prediction of 3-year incident diabetes.

Key Points

CT images may provide useful information to evaluate the risk of developing diabetes.

• Radiomics score for diabetes prediction is based on subtle changes of abdominal organs detected by CT.

• The radiomics signature of pancreas, a combination of five features of CT images, is efficient for early diabetes screening and prediction of future diabetes (AUC > 0.8).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAT:

Abdominal adipose tissue

CI:

Confidence interval

CT:

Computed tomography

LASSO:

Least absolute shrinkage and selection operator

MRI:

Magnetic resonance imaging

ROC:

Receiver-operating characteristic

ROI:

Region of interest

SAT:

Subcutaneous adipose tissue

VAT:

Visceral adipose tissue

References

  1. NCD Risk Factor Collaboration (NCD-RisC) (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4. 4 million participants. Lancet 387:1513–1530

  2. Guo F, Garvey WT (2015) Development of a weighted cardiometabolic disease staging (CMDS) system for the prediction of future diabetes. J Clin Endocrinol Metab 100:3871–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Diabetes Prevention Program Research Group, Knowler WC, Fowler SE et al (2009) 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet 374:1677–1686

    Article  PubMed Central  Google Scholar 

  4. Beagley J, Guariguata L, Weil C, Motala AA (2014) Global estimates of undiagnosed diabetes in adults. Diabetes Res Clin Pract 103:150–160

    Article  PubMed  Google Scholar 

  5. Fisher-Hoch SP, Vatcheva KP, Rahbar MH, McCormick JB (2015) Undiagnosed diabetes and pre-diabetes in health disparities. PLoS One 10:e0133135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee YH, Armstrong EJ, Kim G et al (2015) Undiagnosed diabetes is prevalent in younger adults and associated with a higher risk cardiometabolic profile compared to diagnosed diabetes. Am Heart J 170:760–769 e762

    Article  PubMed  Google Scholar 

  7. Zhou X, Qiao Q, Ji L et al (2013) Nonlaboratory-based risk assessment algorithm for undiagnosed type 2 diabetes developed on a nation-wide diabetes survey. Diabetes Care 36:3944–3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding D, Chong S, Jalaludin B, Comino E, Bauman AE (2015) Risk factors of incident type 2-diabetes mellitus over a 3-year follow-up: results from a large Australian sample. Diabetes Res Clin Pract 108:306–315

    Article  PubMed  Google Scholar 

  9. Abbasi A, Sahlqvist AS, Lotta L et al (2016) A systematic review of biomarkers and risk of incident type 2 diabetes: an overview of epidemiological, prediction and aetiological research literature. PLoS One 11:e0163721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kengne AP, Beulens JW, Peelen LM et al (2014) Non-invasive risk scores for prediction of type 2 diabetes (EPIC-InterAct): a validation of existing models. Lancet Diabetes Endocrinol 2:19–29

    Article  PubMed  Google Scholar 

  11. Herder C, Kowall B, Tabak AG, Rathmann W (2014) The potential of novel biomarkers to improve risk prediction of type 2 diabetes. Diabetologia 57:16–29

    Article  CAS  PubMed  Google Scholar 

  12. Grundy SM (2012) Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol 59:635–643

    Article  CAS  PubMed  Google Scholar 

  13. Wang A, Chen G, Su Z et al (2016) Risk scores for predicting incidence of type 2 diabetes in the Chinese population: the Kailuan prospective study. Sci Rep 6:26548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abbasi A, Peelen LM, Corpeleijn E et al (2012) Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study. BMJ 345:e5900

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chiu HK, Tsai EC, Juneja R et al (2007) Equivalent insulin resistance in latent autoimmune diabetes in adults (LADA) and type 2 diabetic patients. Diabetes Res Clin Pract 77:237–244

    Article  CAS  PubMed  Google Scholar 

  16. McTernan CL, McTernan PG, Harte AL, Levick PL, Barnett AH, Kumar S (2002) Resistin, central obesity, and type 2 diabetes. Lancet 359:46–47

    Article  CAS  PubMed  Google Scholar 

  17. Kaess BM, Pedley A, Massaro JM, Murabito J, Hoffmann U, Fox CS (2012) The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia 55:2622–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang L, Zhang F, Tong N (2016) The association of visceral adipose tissue and subcutaneous adipose tissue with metabolic risk factors in a large population of Chinese adults. Clin Endocrinol (Oxf) 85:46–53

    Article  Google Scholar 

  19. Storz C, Heber SD, Rospleszcz S et al (2018) The role of visceral and subcutaneous adipose tissue measurements and their ratio by magnetic resonance imaging in subjects with prediabetes, diabetes and healthy controls from a general population without cardiovascular disease. Br J Radiol. https://doi.org/10.1259/bjr.20170808:20170808

  20. Liu L, Feng J, Zhang G et al (2018) Visceral adipose tissue is more strongly associated with insulin resistance than subcutaneous adipose tissue in Chinese subjects with pre-diabetes. Curr Med Res Opin 34:123–129

    Article  CAS  PubMed  Google Scholar 

  21. Onat A, Uğur M, Can G, Yüksel H, Hergenç G (2010) Visceral adipose tissue and body fat mass: predictive values for and role of gender in cardiometabolic risk among Turks. Nutrition 26:382–389

    Article  PubMed  Google Scholar 

  22. Shulman GI (2014) Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med 371:2237−2238

    Article  CAS  PubMed  Google Scholar 

  23. Wong VW, Wong GL, Yeung DK et al (2014) Fatty pancreas, insulin resistance, and beta-cell function: a population study using fat-water magnetic resonance imaging. Am J Gastroenterol 109:589–597

    Article  CAS  PubMed  Google Scholar 

  24. Tushuizen ME, Bunck MC, Pouwels PJ et al (2007) Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care 30:2916–2921

    Article  CAS  PubMed  Google Scholar 

  25. Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    Article  CAS  PubMed  Google Scholar 

  26. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    Article  PubMed  Google Scholar 

  27. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu Z, Zhang XY, Shi YJ et al (2017) Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-17-1038:clincanres.1038.2017

  29. Huang YQ, Liang CH, He L et al (2016) Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol 34:2157–2164

    Article  PubMed  Google Scholar 

  30. Kuo MD, Jamshidi N (2014) Behind the numbers: decoding molecular phenotypes with radiogenomics--guiding principles and technical considerations. Radiology 270:320–325

    Article  PubMed  Google Scholar 

  31. McDonald RJ, McDonald JS, Kallmes DF, Carter RE (2013) Behind the numbers: propensity score analysis-a primer for the diagnostic radiologist. Radiology 269:640–645

    Article  PubMed  Google Scholar 

  32. Shafiq-Ul-Hassan M, Zhang GG, Latifi K et al (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys 44:1050–1062

    Article  CAS  PubMed  Google Scholar 

  33. He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z (2016) Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci Rep 6:34921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387

    Article  PubMed  Google Scholar 

  35. Kühn JP, Berthold F, Mayerle J et al (2015) Pancreatic steatosis demonstrated at MR imaging in the general population: clinical relevance. Radiology 276:129–136

    Article  PubMed  Google Scholar 

  36. Nowotny B, Kahl S, Kluppelholz B et al (2018) Circulating triacylglycerols but not pancreatic fat associate with insulin secretion in healthy humans. Metabolism 81:113–125

    Article  CAS  PubMed  Google Scholar 

  37. Vaag A, Lund SS (2007) Non-obese patients with type 2 diabetes and prediabetic subjects: distinct phenotypes requiring special diabetes treatment and (or) prevention? Appl Physiol Nutr Metab 32:912–920

    Article  PubMed  Google Scholar 

  38. Perry RJ, Samuel VT, Petersen KF, Shulman GI (2014) The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510:84–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Awazawa M, Gabel P, Tsaousidou E et al (2017) A microRNA screen reveals that elevated hepatic ectodysplasin A expression contributes to obesity-induced insulin resistance in skeletal muscle. Nat Med 23:1466–1473

    Article  CAS  PubMed  Google Scholar 

  40. Camastra S, Vitali A, Anselmino M et al (2017) Muscle and adipose tissue morphology, insulin sensitivity and beta-cell function in diabetic and nondiabetic obese patients: effects of bariatric surgery. Sci Rep 7:9007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bril F, Barb D, Portillo-Sanchez P et al (2017) Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology 65:1132–1144

    Article  CAS  PubMed  Google Scholar 

  42. Cusi K, Sanyal AJ, Zhang S et al (2017) Non-alcoholic fatty liver disease (NAFLD) prevalence and its metabolic associations in patients with type 1 diabetes and type 2 diabetes. Diabetes Obes Metab 19:1630–1634

    Article  CAS  PubMed  Google Scholar 

  43. Tushuizen ME, Bunck MC, Pouwels PJ, Bontemps S, Mari A, Diamant M (2008) Lack of association of liver fat with model parameters of beta-cell function in men with impaired glucose tolerance and type 2 diabetes. Eur J Endocrinol 159:251–257

    Article  CAS  PubMed  Google Scholar 

  44. Yeoh AJ, Pedley A, Rosenquist KJ, Hoffmann U, Fox CS (2015) The association between subcutaneous fat density and the propensity to store fat viscerally. J Clin Endocrinol Metab 100:E1056–E1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance of Professor Shou-Hua Luo from the Image and Signal Processing Laboratory at the Southeast University.

Funding

This study has received funding by the National Nature Science Foundation of China (NSFC, No. 81525014), the Jiangsu Provincial Special Program of Medical Science (BL2013029), and the Key Research and Development Program of Jiangsu Province (BE2016782).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghong Ju.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Shenghong Ju.

Conflict of interest

The authors declare that they have no conflict of interest.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• Retrospective

• Diagnostic or prognostic study

• Performed at one institution

Electronic supplementary material

ESM 1

(DOCX 1775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, CQ., Wang, YC., Meng, XP. et al. Diabetes risk assessment with imaging: a radiomics study of abdominal CT. Eur Radiol 29, 2233–2242 (2019). https://doi.org/10.1007/s00330-018-5865-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-018-5865-5

Keywords

Navigation