Skip to main content
Log in

Comparison of 3D magnetic resonance imaging and digital subtraction angiography for intracranial artery stenosis

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To compare three-dimensional high-resolution magnetic resonance imaging (3D HR-MRI) and digital subtraction angiography (DSA) for diagnosing and evaluating stenosis in the entire circle of Willis.

Methods

The study included 516 intracranial arteries from 43 patients with intracranial artery stenosis (ICAS) who underwent both 3D HR-MRI and DSA within 1 month. Two readers independently diagnosed atherosclerosis, dissection, moyamoya disease and vasculitis, rated their diagnostic confidence for each vessel and measured the luminal diameters. Reference standard was made from clinico-radiologic diagnosis. Diagnostic accuracy, diagnostic confidence, the degree of stenosis and luminal diameter were assessed and compared between both modalities.

Results

For atherosclerosis, 3D HR-MRI showed better diagnostic accuracy (P = .03–.003), sensitivity (P = .006–.01) and positive predictive value (P ≤ .001–.006) compared to DSA. Overall, the readers were more confident of their diagnosis of ICAS when using 3D HR-MRI (reader 1, P ≤ .001–.007; reader 2, P ≤ .001–.015). 3D HR-MRI showed similar degree of stenosis (P > .05) and higher luminal diameter (P < .05) compared to DSA.

Conclusions

3D HR-MRI might be useful to evaluate atherosclerosis, with better diagnostic confidence and comparable stenosis measurement compared to DSA in the entire circle of Willis.

Key Points

3D HR-MRI showed better diagnostic accuracy for atherosclerosiscompared to DSA

3D HR-MRI showed better overall diagnostic confidence for stenosiscompared to DSA

3D HR-MRI and DSA showed similar degree of stenosis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2D:

two-dimensional

3D:

three-dimensional

DSA:

digital subtraction angiography

GEE:

generalized estimating equation

HR-MRI:

high-resolution magnetic resonance imaging

ICAS:

intracranial artery stenosis

PPV:

positive predictive value

References

  1. Ingall T (2004) Stroke–incidence, mortality, morbidity and risk. J Insur Med 36:143–152

    PubMed  Google Scholar 

  2. Alexander MD, Yuan C, Rutman A et al (2016) High-resolution intracranial vessel wall imaging: imaging beyond the lumen. J Neurol Neurosurg Psychiatry 87:589–597

    Article  Google Scholar 

  3. Bhogal P, Navaei E, Makalanda HL et al (2015) Intracranial vessel wall MRI. Clin Radiol

  4. Choi YJ, Jung SC, Lee DH (2015) Vessel wall imaging of the intracranial and cervical carotid arteries. J Stroke 17:238–255

    Article  Google Scholar 

  5. Swartz RH, Bhuta SS, Farb RI et al (2009) Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 72:627–634

    Article  CAS  Google Scholar 

  6. Dieleman N, van der Kolk AG, Zwanenburg JJ et al (2014) Imaging intracranial vessel wall pathology with magnetic resonance imaging: current prospects and future directions. Circulation 130:192–201

    Article  Google Scholar 

  7. Kim YS, Lim SH, Oh KW et al (2012) The advantage of high-resolution MRI in evaluating basilar plaques: a comparison study with MRA. Atherosclerosis 224:411–416

    Article  CAS  Google Scholar 

  8. Li ML, Xu WH, Song L et al (2009) Atherosclerosis of middle cerebral artery: evaluation with high-resolution MR imaging at 3T. Atherosclerosis 204:447–452

    Article  CAS  Google Scholar 

  9. Xu WH, Li ML, Niu JW, Feng F, Jin ZY, Gao S (2014) Intracranial artery atherosclerosis and lumen dilation in cerebral small-vessel diseases: a high-resolution MRI Study. CNS Neurosci Ther 20:364–367

    Article  Google Scholar 

  10. Kwak HS, Hwang SB, Chung GH, Jeong SK (2014) High-resolution magnetic resonance imaging of symptomatic middle cerebral artery dissection. J Stroke Cerebrovasc Dis 23:550–553

    Article  Google Scholar 

  11. Bley TA, Uhl M, Carew J et al (2007) Diagnostic value of high-resolution MR imaging in giant cell arteritis. AJNR Am J Neuroradiol 28:1722–1727

    Article  CAS  Google Scholar 

  12. Mandell DM, Matouk CC, Farb RI et al (2012) Vessel wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis: preliminary results. Stroke 43:860–862

    Article  Google Scholar 

  13. Kim YJ, Lee DH, Kwon JY et al (2013) High resolution MRI difference between moyamoya disease and intracranial atherosclerosis. Eur J Neurol 20:1311–1318

    Article  CAS  Google Scholar 

  14. Ryoo S, Cha J, Kim SJ et al (2014) High-resolution magnetic resonance wall imaging findings of moyamoya disease. Stroke 45:2457–2460

    Article  Google Scholar 

  15. Obusez EC, Hui F, Hajj-Ali RA et al (2014) High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. AJNR Am J Neuroradiol 35:1527–1532

    Article  CAS  Google Scholar 

  16. Zhang L, Zhang N, Wu J et al (2015) High resolution three dimensional intracranial arterial wall imaging at 3 T using T1 weighted SPACE. Magn Reson Imaging 33:1026–1034

    Article  Google Scholar 

  17. Qiao Y, Steinman DA, Qin Q et al (2011) Intracranialarterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 34:22–30

    Article  Google Scholar 

  18. Garg SK, Mohan S, Kumar S (2011) Diagnostic value of 3D contrast-enhanced magnetic resonance angiography in Takayasu's arteritis–a comparative study with digital subtraction angiography. Eur Radiol 21:1658–1666

    Article  Google Scholar 

  19. Aoki S, Yoshikawa T, Hori M et al (2000) Two-dimensional thick-slice MR digital subtraction angiography for assessment of cerebrovascular occlusive diseases. Eur Radiol 10:1858–1864

    Article  CAS  Google Scholar 

  20. Chung TS, Joo JY, Lee SK, Chien D, Laub G (1999) Evaluation of cerebral aneurysms with high-resolution MR angiography using a section-interpolation technique: correlation with digital subtraction angiography. AJNR Am J Neuroradiol 20:229–235

    CAS  PubMed  Google Scholar 

  21. Kaufmann TJ, Huston J 3rd, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF (2007) Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology 243:812–819

    Article  Google Scholar 

  22. Soize S, Bouquigny F, Kadziolka K, Portefaix C, Pierot L (2014) Value of 4D MR angiography at 3T compared with DSA for the follow-up of treated brain arteriovenous malformation. AJNR Am J Neuroradiol 35:1903–1909

    Article  CAS  Google Scholar 

  23. Tsushima Y, Aoki J, Endo K (2003) Contribution of the diagnostic test to the physician's diagnostic thinking: new method to evaluate the effect. Acad Radiol 10:751–755

    Article  Google Scholar 

  24. Fryback DG, Thornbury JR (1991) The efficacy of diagnostic imaging. Med Decis Making 11:88–94

    Article  CAS  Google Scholar 

  25. Seo N, Park SH, Kim KJ et al (2016) MR enterography for the evaluation of small-bowel inflammation in Crohn disease by using diffusion-weighted imaging without intravenous contrast material: a prospective noninferiority study. Radiology 278:762–772

    Article  Google Scholar 

  26. Lee NJ, Chung MS, Jung SC et al (2016) Comparison of high-resolution MR imaging and digital subtraction angiography for the characterization and diagnosis of intracranial artery disease. AJNR Am J Neuroradiol 37:2245–2250

    Article  CAS  Google Scholar 

  27. Chimowitz MI, Kokkinos J, Strong J et al (1995) Thewarfarin-aspirin symptomatic intracranial disease study. Neurology 45:1488–1493

    Article  CAS  Google Scholar 

  28. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  Google Scholar 

  29. Mossa-Basha M, de Havenon A, Becker KJ et al (2016) Added value of vessel wall magnetic resonance imaging in the differentiation of moyamoya vasculopathies in a non-Asian cohort. Stroke 47:1782–1788

    Article  Google Scholar 

  30. Klein IF, Lavallee PC, Schouman-Claeys E, Amarenco P (2005) High-resolution MRI identifies basilar artery plaques in paramedian pontine infarct. Neurology 64:551–552

    Article  Google Scholar 

  31. Xu WH, Li ML, Gao S et al (2010) In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis. Atherosclerosis 212:507–511

    Article  CAS  Google Scholar 

  32. Lee WJ, Choi HS, Jang J et al (2015) Non-stenotic intracranial arteries have atherosclerotic changes in acute ischemic stroke patients: a 3T MRI study. Neuroradiology 57:1007–1013

    Article  Google Scholar 

  33. Kontzialis M, Wasserman BA (2016) Intracranial vessel wall imaging: current applications and clinical implications. Neurovascular Imaging 2:1–6

    Article  Google Scholar 

  34. de Havenon A, Yuan C, Tirschwell D et al (2015) Nonstenotic culprit plaque: the utility of high-resolution vessel wall MRI of intracranial vessels after ischemic stroke. Case Rep Radiol 2015:356582

    PubMed  PubMed Central  Google Scholar 

  35. Liu Q, Huang J, Degnan AJ et al (2013) Comparison of high-resolution MRI with CT angiography and digital subtraction angiography for the evaluation of middle cerebral artery atherosclerotic steno-occlusive disease. Int J Cardiovasc Imaging 29:1491–1498

    Article  Google Scholar 

  36. Saam T, Hetterich H, Hoffmann V et al (2013) Meta-analysis and systematic review of the predictive value of carotid plaque hemorrhage on cerebrovascular events by magnetic resonance imaging. JAmCollCardiol 62:1081–1091

    Google Scholar 

  37. Zhang YY, Guallar E, Qiao Y, Wasserman BA (2014) Is carotid intima-media thickness as predictive as other noninvasive techniques for the detection of coronary artery disease? Arterioscler Thromb Vasc Biol 34:1341–1345

    Article  CAS  Google Scholar 

  38. Natori T, Sasaki M, Miyoshi M et al (2014) Evaluating middle cerebral artery atherosclerotic lesions in acute ischemic stroke using magnetic resonance T1-weighted 3-dimensional vessel wall imaging. J Stroke Cerebrovasc Dis 23:706–711

    Article  Google Scholar 

  39. Research Committee on the Pathology and Treatment of Spontaneous Occlusion of the Circle of Willis (2012) Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis). Neurol Med Chir (Tokyo) 52:245–266

    Article  Google Scholar 

  40. Fox AJ, Millar J, Raymond J et al (2009) Dangerous advances in measurements from digital subtraction angiography: when is a millimeter not a millimeter? Am J Neuroradiol 30:459–461

    Article  CAS  Google Scholar 

  41. Boussion N, Soulez G, De Guise JA, Daronat M, Qin Z, Cloutier G (2004) Geometrical accuracy and fusion of multimodal vascular images: a phantom study. Med Phys 31:1434–1443

    Article  Google Scholar 

  42. Choi CG, Lee DH, Lee JH et al (2007) Detection of intracranial atherosclerotic steno-occlusive disease with 3D time-of-flight magnetic resonance angiography with sensitivity encoding at 3T. AJNR Am J Neuroradiol 28:439–446

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Chai Jung.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Sang Joon Kim.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Funding

This research was supported by the Korea Healthcare Technology R&D Project, Ministry of Health, Welfare, and Family Affairs, Republic of Korea (grant number -HI12C1847).

Statistics and biometry

One of the authors has significant statistical expertise (Seon-Ok Kim).

Ethical approval

Institutional review board approval was obtained.

Informed consent

Written informed consent was waived by the institutional review board.

Methodology

  • retrospective

  • diagnostic study

  • performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.E., Jung, S.C., Lee, S.H. et al. Comparison of 3D magnetic resonance imaging and digital subtraction angiography for intracranial artery stenosis. Eur Radiol 27, 4737–4746 (2017). https://doi.org/10.1007/s00330-017-4860-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-4860-6

Keywords

Navigation