Skip to main content
Log in

Non-invasive determination of pulmonary hypertension with dynamic contrast-enhanced computed tomography: a pilot study

  • Computed Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

In this pilot study we explored whether contrast-material bolus propagation time and speed in the pulmonary arteries (PAs) determined by dynamic contrast-enhanced computed tomography (DCE-CT) can distinguish between patients with and without pulmonary hypertension (PH).

Methods

Twenty-three patients (18 with and 5 without PH) were examined with a DCE-CT sequence following their diagnostic or follow-up right-sided heart catheterisation (RHC). X-ray attenuation over time curves were recorded for regions of interest in the main, right and left PA and fitted with a spline fit. Contrast material bolus propagation speeds and time differences between the peak concentrations were compared with haemodynamic parameters from RHC.

Results

Bolus speed correlated (ρ = −0.55) with mean pulmonary arterial pressure (mPAP) and showed a good discriminative power between patients with and without PH (cut-off speed 317 mm/s; sensitivity 100 %/specificity 100 %). Additionally, time differences between peaks correlated with mPAP (ρ = 0.64 and 0.49 for right and left PA, respectively) and discrimination was achieved with sensitivity 100 %/specificity 100 % (cut-off time 0.15 s) and sensitivity 93 %/specificity 80 % (cut-off time 0.45 s), respectively.

Conclusions

Bolus propagation speed and time differences between contrast material peaks in the PA can identify PH. This method could be used to confirm the indication for RHC in patients screened for pulmonary hypertension.

Key Points

Dynamic contrast-enhanced computed tomography (CT) can identify patients with pulmonary hypertension.

Bolus propagation speed in the pulmonary artery is reduced in pulmonary hypertension.

Peak-contrast propagation times provide a practical surrogate for speed.

This non-invasive technique could serve as a screening method for pulmonary hypertension.

Invasive right-sided heart catheterisations might be restricted to a smaller group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AVDO2 :

arterial-venous difference in oxygen content

CM:

contrast material

CO:

cardiac output

IPAH:

idiopathic pulmonary arterial hypertension

mPAP:

mean pulmonary artery pressure

PA:

pulmonary artery

PH:

pulmonary hypertension

PVR:

pulmonary vascular resistance

RHC:

right-sided heart catheterisation

SO2 :

oxygen saturation

t max :

time to peak

Δt max :

propagation time between regions of interest

v bolus :

propagation speed of CM bolus

\( \overline{v_{bolus}} \) :

average propagation speed of CM bolus

References

  1. Galie N, Hoeper MM, Humbert M et al (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Resp J 34:1219–1263

    Article  CAS  Google Scholar 

  2. Simonneau G, Robbins IM, Beghetti M et al (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54:S43–S54

    Article  PubMed  Google Scholar 

  3. Hoeper MM, Lee SH, Voswinckel R et al (2006) Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol 48:2546–2552

    Article  PubMed  Google Scholar 

  4. Lang IM, Plank C, Sadushi-Kolici R, Jakowitsch J, Klepetko W, Maurer G (2010) Imaging in pulmonary hypertension. JACC Cardiovasc Imaging 3:1287–1295

    Article  PubMed  Google Scholar 

  5. Okajima Y, Ohno Y, Washko GR, Hatabu H (2011) Assessment of pulmonary hypertension: What CT and MRI can provide. Acad Radiol 18:437–453

    Article  PubMed  Google Scholar 

  6. Stevens GR, Fida N, Sanz J (2012) Computed tomography and cardiac magnetic resonance imaging in pulmonary hypertension. Prog Cardiovasc Dis 55:161–171

    Article  PubMed  Google Scholar 

  7. Reiter G, Reiter U, Kovacs G et al (2008) Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging 1:23–30

    Article  PubMed  Google Scholar 

  8. Sanz J, Kuschnir P, Rius T et al (2007) Pulmonary arterial hypertension: noninvasive detection with phase-contrast MR imaging. Radiology 243:70–79

    Article  PubMed  Google Scholar 

  9. Chan AL, Juarez MM, Shelton DK et al (2011) Novel computed tomographic chest metrics to detect pulmonary hypertension. BMC Med Imaging 11:7

    Article  PubMed Central  PubMed  Google Scholar 

  10. Miles KA, Lee T, Goh V et al (2012) Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol 22:1430–1441

    Article  CAS  PubMed  Google Scholar 

  11. Barfett JJ, Fierstra J, Mikulis DJ, Krings T (2010) Blood velocity calculated from volumetric dynamic computed tomography angiography. Invest Radiol 45:778–781

    Article  PubMed  Google Scholar 

  12. Ganz W, Donoso R, Marcus HS, Forrester JS, Swan HJC (1971) New technique for measurement of cardiac output by thermodilution in man. Am J Cardiol 27:392–396

    Article  CAS  PubMed  Google Scholar 

  13. International Commission on Radiological Protection ICRP (2007) The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP 37:1–332

    Google Scholar 

  14. Huda W, Magill D, He W (2011) CT effective dose per dose length product using ICRP 103 weighting factors. Med Phys 38:1261–1265

    Article  PubMed  Google Scholar 

  15. Helderman F, Mauritz G, Andringa KE, Vonk-Noordegraaf A, Marcus JT (2011) Early onset of retrograde flow in the main pulmonary artery is a characteristic of pulmonary arterial hypertension. J Magn Reson Imaging 33:1362–1368

    Article  PubMed  Google Scholar 

  16. Gruenig E, Barner A, Bell M et al (2011) Non-invasive diagnosis of pulmonary hypertension: ESC/ERS guidelines with updated commentary of the cologne consensus conference 2011. Int J Cardiol 154:S3–S12

    Article  Google Scholar 

  17. Safdar Z, Katz M, Frost A (2010) Computed axial tomography evidence of left atrial enlargement: A predictor of elevated pulmonary capillary wedge pressure in pulmonary hypertension. Int J Gen Med 3:23–29

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Bradlow WM, Gibbs JSR, Mohiaddin RH (2012) Cardiovascular magnetic resonance in pulmonary hypertension. J Cardiovasc Magn Reson 14:6

    Article  PubMed  Google Scholar 

  19. Ley S, Fink C, Risse F et al (2013) Magnetic resonance imaging to assess the effect of exercise training on pulmonary perfusion and blood flow in patients with pulmonary hypertension. Eur Radiol 23:324–331

    Article  PubMed  Google Scholar 

  20. Truong QA, Massaro JM, Rogers IS et al (2012) Reference values for normal pulmonary artery dimensions by noncontrast cardiac computed tomography the Framingham heart study. Circ Cardiovasc Imaging 5:147–154

    Article  PubMed Central  PubMed  Google Scholar 

  21. Matthay RA, Schwarz MI, Ellis JH et al (1981) Pulmonary artery hypertension in chronic obstructive pulmonary disease: determination by chest radiography. Invest Radiol 16:95–100

    Google Scholar 

  22. Chetty KG, Brown SE, Light RW (1982) Identification of pulmonary-hypertension in chronic obstructive pulmonary-disease from routine chest radiographs. Am Rev Respir Dis 126:338–341

    CAS  PubMed  Google Scholar 

  23. Bush A, Gray H, Denison DM (1988) Diagnosis of pulmonary-hypertension from radiographic estimates of pulmonary arterial size. Thorax 43:127–131

    Article  CAS  PubMed  Google Scholar 

  24. Tan R, Kuzo R, Goodman L et al (1998) Utility of CT scan evaluation for predicting pulmonary hypertension in patients with parenchymal lung disease. Chest 113:1250–1256

    Article  CAS  PubMed  Google Scholar 

  25. Ng C, Wells A, Paley S (1999) A CT sign of chronic pulmonary arterial hypertension: The ratio of main pulmonary artery to aortic diameter. J Thorac Imaging 14:270–278

    Article  CAS  PubMed  Google Scholar 

  26. Berty HL, Simon M, Chapman BE (2012) A semi-automated quantification of pulmonary artery dimensions in computed tomography angiography images. AMIA Annu Symp Proc 2012:36–42

    PubMed  Google Scholar 

  27. Linguraru MG, Pura JA, Van Uitert RL et al (2010) Segmentation and quantification of pulmonary artery for noninvasive CT assessment of sickle cell secondary pulmonary hypertension. Med Phys 37:1522–1532

    Article  PubMed  Google Scholar 

  28. Edwards P, Bull R, Coulden R (1998) CT measurement of main pulmonary artery diameter. Br J Radiol 71:1018–1020

    CAS  PubMed  Google Scholar 

  29. Devaraj A, Hansell DM (2009) Computed tomography signs of pulmonary hypertension: Old and new observations. Clin Radiol 64:751–760

    Article  CAS  PubMed  Google Scholar 

  30. Lee H, Kim SY, Lee SJ, Kim JK, Reddy RP, Schoepf UJ (2012) Potential of right to left ventricular volume ratio measured on chest CT for the prediction of pulmonary hypertension: correlation with pulmonary arterial systolic pressure estimated by echocardiography. Eur Radiol 22:1929–1936

    Article  PubMed  Google Scholar 

  31. Roeleveld R, Marcus J, Faes T et al (2005) Interventricular septal configuration at MR imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology 234:710–717

    Article  PubMed  Google Scholar 

  32. Dellegrottaglie S, Sanz J, Poon M et al (2007) Pulmonary hypertension: Accuracy of detection with left ventricular septal-to-free wall curvature ratio measured at cardiac MRI. Radiology 243:63–69

    Article  PubMed  Google Scholar 

  33. Sauvage N, Reymond E, Jankowski A et al (2013) ECG-gated computed tomography to assess pulmonary capillary wedge pressure in pulmonary hypertension. Eur Radiol 23:2658–2665

    Article  PubMed  Google Scholar 

  34. Jardim C, Rochitte CE, Humbert M et al (2007) Pulmonary artery distensibility in pulmonary arterial hypertension: an MRI pilot study. Eur Resp J 29:476–481

    Article  CAS  Google Scholar 

  35. Sanz J, Kariisa M, Dellegrottaglie S et al (2009) Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc Imaging 2:286–295

    Article  PubMed  Google Scholar 

  36. Swift AJ, Rajaram S, Condliffe R et al (2012) Pulmonary artery relative area change detects mild elevations in pulmonary vascular resistance and predicts adverse outcome in pulmonary hypertension. Invest Radiol 47:571–577

    Article  PubMed  Google Scholar 

  37. Davarpanah AH, Hodnett PA, Farrelly CT et al (2011) MDCT bolus tracking data as an adjunct for predicting the diagnosis of pulmonary hypertension and concomitant right-heart failure. AJR Am J Roentgenol 197:1064–1072

    Article  PubMed  Google Scholar 

  38. Jeong HJ, Vakil P, Sheehan JJ et al (2011) Time-resolved magnetic resonance angiography: Evaluation of intrapulmonary circulation parameters in pulmonary arterial hypertension. J Magn Reson Imaging 33:225–231

    Article  PubMed Central  PubMed  Google Scholar 

  39. Skrok J, Shehata ML, Mathai S et al (2012) Pulmonary arterial hypertension: MR imaging-derived first-pass bolus kinetic parameters are biomarkers for pulmonary hemodynamics, cardiac function, and ventricular remodeling. Radiology 263:678–687

    Article  PubMed  Google Scholar 

  40. Pienn M, Kovacs G, Tscherner M et al (2013) Determination of cardiac output with dynamic contrast-enhanced computed tomography. Int J Cardiovasc Imaging. doi:10.1007/s10554-013-0279-6

Download references

Acknowledgements

The authors would like to thank Wolfgang Loidl for his help in setting up the examination protocol, Dr. László Fóris for fruitful discussions, Dr. Daniela Kleinschek for retrieving patient data and Eugenia Lamont for the linguistic review.

Clinical trial registration: ClinicalTrials.gov (NCT01607489).

The preliminary data of this manuscript was presented as an oral presentation at the European Congress of Radiology 2013, Vienna, Austria.

This study was funded by the Ludwig Boltzmann Institute for Lung Vascular Research.

None of the authors declared potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Bálint.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 910 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pienn, M., Kovacs, G., Tscherner, M. et al. Non-invasive determination of pulmonary hypertension with dynamic contrast-enhanced computed tomography: a pilot study. Eur Radiol 24, 668–676 (2014). https://doi.org/10.1007/s00330-013-3067-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-3067-8

Keywords

Navigation