Skip to main content

Advertisement

Log in

MRI in guiding and assessing intramyocardial therapy

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Cardiovascular intervention, using MRI guidance, is challenging for clinical applications. Real-time imaging sequences with high spatial resolution are needed for monitoring intramyocardial delivery of drug, gene, or stem cell therapies. New generation MR scanners make local intramyocardial and vascular wall therapies feasible. Contrast-enhanced MRI is used for assessing myocardial ischemia, infarction, and scar tissue. Active (microcoils) and passive (T1 and T2* mechanisms) tracking methods have been used for visualization of endovascular catheters. Safety issues related to potential heating of endovascular devices is still a major obstacle for MRI-guided interventions. Fabrication of MRI-compatible interventional devices is limited. Noninvasive imaging strategies will be critical in defining spatial and temporal characteristics of angiogenesis and myocardial repair as well as in assessing the efficacy of new therapies in ischemic heart disease. MRI contrast media improve the capability of MRI by delineating the target and vascular tree. Labeling stem cells enables MRI to trace distribution, differentiation, and survival in myocardium and vascular wall. In the long term, MRI in guiding and assessing intramyocardial therapy may circumvent the limitations of peripherally administered cell therapy, X-ray angiography, and nuclear imaging. MRI represents a highly attractive discipline whose systematic development will foster the implementation of new cardiac and vascular therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. American Heart Association (2001) Heart and stroke statistical update. America Heart Association, Dallas, TX

    Google Scholar 

  2. Allen KB, Dowling RD, Fudge TL, Schoettle GP, Selinger SL, Gangahar DM, Angell WW, Petracek MR, Shaar CJ, O’Neill WW (1999) Comparison of transmural revascularization with medical therapy in patients with refractory angina. N Engl J Med 341:1029–1036

    Article  Google Scholar 

  3. Zhou YF, Stabile E, Walker J, Shou M, Baffour R, Yu Z, Rott D, Yancopoulos GD, Rudge JS, Epstein SE (2004) Effects of gene delivery on collateral development in chronic hypoperfusion: diverse effects of angiopoietin-1 versus vascular endothelial growth factor. J Am Coll Cardiol 18(44):897–903

    Article  Google Scholar 

  4. Hellermann JP, Jacobsen SJ, Gersh BJ, Rodeheffer RJ, Reeder GS, Roger VL (2002) Heart failure after myocardial infarction: a review. Am J Med 113:324–330

    Article  Google Scholar 

  5. Rezaee M, Yeung AC, Altman P, Lubbe D, Takeshi S, Schwartz RS, Stertzer S, Altman JD (2001) Evaluation of the percutaneous intramyocardial injection for local myocardial treatment. Catheter Cardiovasc Interv 53:271–276

    Article  Google Scholar 

  6. Sanborn TA, Hackett NR, Lee LY, El-Sawy T, Blanco I, Tarazona N, Deutsch E, Crystal R, Rosengart TK (2001) Percutaneous endocardial transfer and expression of genes to the myocardium utilizing fluoroscopic guidance. Catheter Cardiovasc Interv 52:260–2666

    Google Scholar 

  7. Esakof DD, Maysky M, Losordo DW, Vale PR, Lathi K, Pastore JO, Symes JF, Isner JM (1999) Intraoperative multiplane transesophageal echocardiography for guiding direct myocardial gene transfer of vascular endothelial growth factor in patients with refractory angina pectoris. Hum Gene Ther 10:2307–2314

    Article  Google Scholar 

  8. Seiler C, Fleisch M, de Marchi SF, Billinger M, Wahl A, Eberli FR, Garachemani AR, Meier B (1998) Functional assessment of collateral in the human coronary circulation. Semin Interv Cardiol 3:13–19

    Google Scholar 

  9. Fuchs S, Satler LF, Kornowski R, Okubagzi P, Weisz G, Baffour R, Waksman R, Weissman NJ, Cerqueira M, Leon MB, Epstein SE (2003) Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol 41:1721–1724

    Article  Google Scholar 

  10. Wolf T, Gepstein L, Drorr U et al (2001) Detailed endocardial mapping accurately predicts the transmural extent of myocardial infarction. J Am Coll Cardiol 37:1591–1597

    Article  Google Scholar 

  11. Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP (2003) Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361(9351):47–49

    Article  Google Scholar 

  12. Perin EC, Silva GV, Sarmento-Leite R, Sousa AL, Howell M, Muthupillai R, Lambert B, Vaughn WK, Flamm SD (2002) Assessing myocardial viability and infarct transmurality with left ventricular electromechanical mapping in patients with stable coronary artery disease: validation by delayed-enhancement magnetic resonance imaging. Circulation 106:957–961

    Google Scholar 

  13. Vale PR, Losordo DW, Milliken CE, McDonald MC, Gravelin LM, Curry CM, Esakof DD, Maysky M, Symes JF, Isner JM (2001) Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103:2138–2143

    Google Scholar 

  14. Thomas JW, Kuo MD, Chawla M, Waugh JM, Yuksel E, Wright KC, Gerrity PM, Shenaq SM, Whigham CJ, Fisher RG (1998) Vascular gene therapy. Radiographics 18:1373–1394

    Google Scholar 

  15. Kandarpa K (2000) Catheter-based techniques for endovascular local drug delivery. J Vasc Interv Radiol Suppl 11:419–423

    Google Scholar 

  16. Yang X, Atalar E, Li D, Serfaty JM, Wang D, Kumar A, Cheng L (2001) Magnetic resonance imaging permits in vivo monitoring of catheter-based vascular gene delivery. Circulation 104:1588–1590

    Google Scholar 

  17. Fahrig R, Butts K, Wen Z, Saunders R, Kee ST, Sze DY, Daniel BL, Laerum F, Pelc NJ (2001) A truly hybrid interventional MR/X-ray system: feasibility demonstration. J Magn Reson Imaging 13:294–300

    Article  CAS  PubMed  Google Scholar 

  18. Vogl TJ, Balzer JO, Mack MG, Bett G, Oppelt A (2002) Hybrid MR interventional imaging system; combined MR and angiography suites with single interactive table: feasibility study in vascular liver tumor procedures. Eur Radiol 12:1394–1400

    Article  PubMed  Google Scholar 

  19. Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, Hare JM, Bulte JW (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293

    Google Scholar 

  20. Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    Article  CAS  PubMed  Google Scholar 

  21. Dick AJ, Guttman MA, Raman VK, Peters DC, Pessanha BS, Hill JM, Smith S, Scott G, McVeigh ER, Lederman RJ (2003) Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation 108:2899–2904

    Google Scholar 

  22. Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Hinds KA, Pessanha BS, Guttman MA, Varney TR, Martin BJ, Dunbar CE, McVeigh ER, Lederman RJ (2003) Serial cardiac magnetic resonance imaging (MRI) of injected mesenchymal stem cells. Circulation 108:1009–1014

    Google Scholar 

  23. Kuehne T, Saeed M, Higgins CB, Gleason K, Krombach GA, Weber OM, Martin AJ, Turner D, Teitel D, Moore P (2003) MRI guided deployment and postinterventional assessment of endovascular stents in the pulmonary position in swine. Radiology 226:475–481

    Google Scholar 

  24. Saeed M, Lee R, Martin A, Weber O, Krombach GA, Schalla S, Lee M, Saloner D, Higgins CB (2004) Transendocardial delivery of extracellular tracers using a combination of X-ray and MRI fluoroscopy (XMR)-guidance: feasibility study in dogs. Radiology 231:689–696

    Google Scholar 

  25. Schalla S, Saeed M, Higgins CB, Martin A, Weber O, Moore P (2003) Magnetic resonance imaging-guided cardiac catheterization in swine model of atrial septal defect. Circulation 108:1865–1870

    Google Scholar 

  26. Razavi R, Hill DL, Keevil SF, Miquel ME, Muthurangu V, Hegde S, Rhode K, Barnett M, van Vaals J, Hawkes DJ, Baker E (2003) Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet 362:1877–1882

    Article  Google Scholar 

  27. Engellau L, Olsrud J, Brockstedt S, Albrechtsson U, Norgren L, Stahlberg F, Larsson EM (2000) MR evaluation ex vivo and in vivo of a covered stent-graft for abdominal aortic aneurysms: ferromagnetism, heating, artifacts and velocity mapping. J Magn Reson Imaging 12:112–121

    Article  Google Scholar 

  28. Lewin JS, Duerk JL, Jain VR, Petersilge CA, Chao CP, Haaga JR (1996) Needle localization in MR-guided biopsy and aspiration: effect of field strength, sequence design and magnetic field orientation. Am J Roentgenol 166:1337–1345

    CAS  Google Scholar 

  29. Kuehne T, Saeed M, Reddy G, Akbari H, Gleason K, Turner D, Teitel D, Moore P, Higgins CB (2001) Sequential magnetic resonance monitoring of pulmonary flow with endovascular stents placed across the pulmonary valve in growing swine. Circulation 104:2363–2368

    Google Scholar 

  30. Buecker A, Spuentrup E, Ruebben A, Mahnken A, Nguyen TH, Kinzel S, Gunther RW (2004) New metallic MR stents for artifact-free coronary MR angiography: feasibility study in a swine model. Invest Radiol 39:250–253

    Article  Google Scholar 

  31. Leung DA, Debatin JF, Wildermuth S, McKinnon GC, Holtz D, Dumoulin CL, Darrow RD, Hofmann E, von Schulthess GK (1995) Intravascular MR tracking catheter: preliminary experimental evaluation. Am J Roentgenol 164:1265–1270

    Google Scholar 

  32. Dumoulin CL, Souza SP, Darrow RD (1993) Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 29:411–415

    Google Scholar 

  33. Glowinski A, Kursch J, Adam G, Bucker A, Noll TG, Gunther RW (1998) Device visualization for interventional MRI using local magnetic fields: basic theory and its application to catheter visualization. IEEE Trans Med Imag 17:786–793

    Article  Google Scholar 

  34. Bakker CJ, Hoogeveen RM, Weber J, van Vaals JJ, Viergever MA, Mali WP (1996) Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn Reson Med 36:816–820

    Google Scholar 

  35. Bakker CJ, Hoogeveen RM, Hurtak WF, van Vaals JJ, Viergever MA, Mali WP (1997) MR-guided endovascular interventions: susceptibility-based catheter and near real-time imaging technique. Radiology 202:273–276

    Google Scholar 

  36. Wacker FK, Reither K, Branding G, Wendt M, Wolf KJ (1999) Magnetic resonance-guided vascular catheterization: feasibility using a passive tracking technique at 0.2 Tesla in a pig model. J Magn Reson Imaging 10:841–844

    Google Scholar 

  37. Ladd ME, Erhart P, Debatin JF, Hofmann E, Boesiger P, von Schulthess GK, McKinnon GC (1997) Guidewire antennas for MR fluoroscopy. Magn Reson Med 37:891–897

    Google Scholar 

  38. Ocali O, Atalar E (1997) Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med 37:112–118

    Google Scholar 

  39. Unal O, Korosec FR, Frayne R, Strother CM, Mistretta CA (1998) A rapid 2D time-resolved variable-rate k-space sampling MR technique for passive catheter tracking during endovascular procedures. Magn Reson Med 40:356–362

    Google Scholar 

  40. Nanz D, Weishaupt D, Quick HH, Debatin JF (2000) TE-switched double-contrast enhanced visualization of vascular system and instruments for MR-guided interventions. Magn Reson Med 43:645–648

    Google Scholar 

  41. Ladd ME, Quick HH (2000) Reduction of resonant RF heating in intravascular catheters using coaxial chockes. Magn Reson Med 43:615–619

    Google Scholar 

  42. Yeung CJ, Atalar E (2000) RF transmit power limit for the barewire loopless catheter antenna. J Magn Reson Imaging 12:86–91

    Article  Google Scholar 

  43. Saeed M, Wendland MF, Watzinger N, Akbari H, Higgins CB (2000) MR contrast media for myocardial viability, microvascular integrity and perfusion. Eur J Radiol 34:179–195

    Article  Google Scholar 

  44. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    CAS  PubMed  Google Scholar 

  45. Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM (2000) Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 36:1985–1991

    Article  CAS  PubMed  Google Scholar 

  46. Wilke NM, Zenovich AG, Jerosch-Herold M, Henry TD (2001) Cardiac magnetic resonance imaging for the assessment of myocardial angiogenesis. Curr Interv Cardiol Rep 3:205–212

    Google Scholar 

  47. Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE (2004) Analysis of myocardial perfusion MRI. J Magn Reson Imaging 6:758–770

    Article  Google Scholar 

  48. Saeed M, Higgins CB, Geschwind JF, Wendland MF (2000) T1-relaxation kinetics of extracellular, intracellular and intravascular MR contrast agents in normal and acutely reperfused infarcted myocardium using echoplanar MR imaging. Eur Radiol 10:310–318

    Article  Google Scholar 

  49. Saeed M, van Dijke CF, Mann JS, Wendland MF, Rosenau W, Higgins CB, Brasch RC (1998) Histologic confirmation of microvascular permeability of macromolecular MR contras medium in reperfused myocardium infarction. J Magn Reson Imaging 8:561–567

    Google Scholar 

  50. Gaillard S, Kubiak C, Stolz C, Bonnemain B, Chassard D (2002) Safety and pharmacokinetics of p792, a new blood-pool agent: results of clinical testing in nonpatient volunteers. Invest Radiol 37:161–166

    Article  Google Scholar 

  51. Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, Vogl TJ, Martin H, Schaechinger V, Dimmeler S, Zeiher AM (2003) Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI). Circulation 108:2212–2218

    Article  CAS  PubMed  Google Scholar 

  52. Pearlman JD, Laham RJ, Simons M (2000) Coronary angiogenesis: detection in vivo with MR imaging sensitive to collateral neocirculation-preliminary study in pigs. Radiology 214:801–809

    Google Scholar 

  53. Laham RJ, Rezaee M, Post M, Novicki D, Sellke FW, Pearlman JD, Simons M, Hung D (2000) Intramyocardial delivery of fibroblast growth factor-2 induces neovascularization in a porcine model of chronic myocardial ischemia. J Pharmacol Exp Ther 292:795–802

    Google Scholar 

  54. Pearlman DJ, Laham RJ, Post M, Leiner T, Simons M (2002) Medical imaging techniques in the evaluation of strategies for therapeutic angiogenesis. Curr Pharm Des 8:1467–1496

    Google Scholar 

  55. Marchal G, Ni Y, Herijgers P, Flameng W, Petre C, Bosmans H, Yu J, Ebert W, Hilger CS, Pfefferer D, Semmler W, Baert AL (1996) Paramagnetic metalloporphyrins: infarct avid contrast agents for diagnosis of acute myocardial infarction by MRI. Eur Radiol 6:2–8

    Article  Google Scholar 

  56. Watzinger N, Lund GK, Higgins CB, Wendland MF, Weinmann HJ, Saeed M (2002) The potential of contrast enhanced magnetic resonance imaging for predicting left ventricular remodeling. J Magn Reson Imaging 16:633–640

    Article  Google Scholar 

  57. Saeed M, Lund G, Wendland MF, Bremerich J, Weinmann H, Higgins CB (2001) Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction using necrosis specific and extracellular nonspecific contrast media. Circulation 103:871–876

    Google Scholar 

  58. Pislaru SV, Ni Y, Pislaru C, Bosmans H, Miao Y, Bogaert J, Dymarkowski S, Semmler W, Marchal G, Van de Werf FJ (1999) Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent. Circulation 99:690–696

    Google Scholar 

  59. Barkhausen J, Ebert W, Heyer C, Debatin JF, Weinmann HJ (2003) Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging. Circulation 108:605–609

    Article  CAS  PubMed  Google Scholar 

  60. Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H (2003) Tissue-specific MR contrast agents. Eur J Radiol 46:33–44

    Article  Google Scholar 

  61. Lederman RJ, Guttman MA, Peters DC, Thompson RB, Sorger JM, Dick AJ, Raman VK, McVeigh ER (2002) Catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation 105:1282–1284

    Google Scholar 

  62. Luo Z, Diaco M, Murohara T, Ferrara N, Isner JM, Symes JF (1997) Vascular endothelial growth factor attenuates myocardial ischemia-reperfusion injury. Ann Thorac Surg 64:993–998

    Article  Google Scholar 

  63. Guttman MA, McVeigh ER (2001) Techniques for fast stereoscopic MRI. Magn Reson Med 46:317–323

    Google Scholar 

  64. Simons M, Bonow RO, Chronos NA, Cohen DJ, Giordano FJ, Hammond HK, Laham RJ, Li W, Pike M, Sellke FW, Stegmann TJ, Udelson JE, Rosengart TK (2000) Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation 102:E73–E86

    Google Scholar 

  65. Thompson WD, Li WW, Maragoudakis M (2000) The clinical manipulation of angiogenesis: pathology, side-effects, surprises and opportunities with novel human therapies. J Pathol 190:330–337

    Article  Google Scholar 

  66. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, control clinical trail. Circulation 105:788–793

    Google Scholar 

  67. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP (1988) Human heart: tagging with MR imaging—a method for noninvasive assessment of myocardial motion. Radiology 169:59–63

    Google Scholar 

  68. Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, Ellmer A, Dreysse S, Fleck E (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99:763–770

    CAS  PubMed  Google Scholar 

  69. Hundley WG, Hamilton CA, Thomas MS, Herrington DM, Salido TB, Kitzman DW, Little WC, Link KM (1999) Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation 100:1697–1702

    CAS  PubMed  Google Scholar 

  70. Bellenger NG, Davies LC, Francis JM, Coats AJ, Pennell DJ (2000) Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2:271–278

    Google Scholar 

  71. Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, Klimek W, Oswald H, Fleck E (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101:1379–1386

    Google Scholar 

  72. Nagel E, Stuber M, Lakatos M, Scheidegger MB, Boesiger P, Hess OM (2000) Cardiac rotation and relaxation after anterolateral myocardial infarction. Coron Artery Dis 11:261–267

    Article  Google Scholar 

  73. Schumacher B, Pecher P, von Specht BU, Stegmann T (1998) Induction of neoangiogenesis in ischemic myocardium by human growth factor: first clinical results of a new treatment of coronary heart disease. Circulation 97:645–650

    Google Scholar 

  74. Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW, Hachamovitch R, Szulc M, Kligfield PD, Okin PM, Hahn RT, Devereux RB, Post MR, Hackett NR, Foster T, Grasso TM, Lesser ML, Isom OW, Crystal RG (1999) Angiogenesis gene therapy: phase 1 assessment of direct intramyocardial administration of an adenovirus vector expression VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100:468–474

    Google Scholar 

  75. Laham RJ, Sellke FW, Edelman ER, Pearlman JD, Ware JA, Brown DL, Gold JP, Simons M (1999) Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase 1 randomized, double-blind, placebo-controlled trial. Circulation 100:1865–1871

    Google Scholar 

  76. Stegmann TJ, Hoppert T, Schneider A, Gemeinhardt S, Kocher M, Ibing R, Strupp G (2000) Induction of myocardial neo-angiogenesis by human growth factors: a new therapeutic option in coronary heart disease. Herz 25:589–599

    Google Scholar 

  77. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM (1998) Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98:2800–2804

    Google Scholar 

  78. Udelson JE, Dilsizian V, Laham RJ, Chronos N, Vansant J, Blais M, Galt JR, Pike M, Yoshizawa C, Simons M (2000) Therapeutic angiogenesis with recombinant fibroblast growth factor-2 improves stress and rest myocardial perfusion abnormalities inpatients with severe symptomatic chronic coronary artery disease. Circulation 102:1605–1610

    Google Scholar 

  79. Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, Bonow RO (2000) Intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 101:118–121

    Google Scholar 

  80. Losordo DW, Vale PR, Hendel RC, Milliken CE, Fortuin FD, Cummings N, Schatz RA, Asahara T, Isner JM, Kuntz RE (2002) Phase 1/2 placebo-controlled, double-blinded, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 105:2012–2018

    Google Scholar 

  81. Vale PR, Losordo DW, Milliken CE, Esakof DD, Isner JM (1999) Images in cardiovascular medicine: percutaneous myocardial gene transfer of phVEGF-2. Circulation 100:2462–2463

    Google Scholar 

  82. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER, VIVA Investigators (2003) The VIVA trial: vascular endothelial growth factor in ischemia or vascular angiogenesis. Circulation 107:1359–1365

    Google Scholar 

  83. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, Kloner RA, Leor J (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium—feasibility, cell migration and body distribution. Circulation 108:863–868

    Google Scholar 

  84. Wang JS, Shum-Tim D, Chedrawy E, Chiu RC (2001) The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. J Thorac Cardiovasc Surg 122:699–705

    Article  Google Scholar 

  85. Krombach GA, Baireuther R, Higgins CB, Saeed M (2004) Distribution of intramyocardially injected extracellular MR contrast medium: effects of concentration and volume. Eur Radiol 14:334–340

    Article  Google Scholar 

  86. Lazarous DF, Shou M, Stiber JA, Dadhania DM, Thirumurti V, Hodge E, Unger EF (1997) Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution. Cardiovasc Res 36:78–85

    Article  Google Scholar 

  87. Buschmann I, Schaper W (1999) Arteriogenesis versus angiogenesis: two mechanisms of vessel growth. News Physiol Sci 14:121–125

    Google Scholar 

  88. Helisch A, Schaper W (2003) Arteriogenesis: the development and growth of collateral arteries. Microcirculation 10:83–97

    Article  PubMed  Google Scholar 

  89. Symes JF, Losordo DW, Vale PR, Lathi KG, Esakof DD, Mayskiy M, Isner JM (1999) Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg 68:830–836

    Article  Google Scholar 

  90. Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2003) Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant 3:86–88

    Google Scholar 

  91. Fujii H, Tomita S, Nakatani T, Fukuhara S, Hanatani A, Ohtsu Y, Ishida M, Yutani C, Miyatake K, Kitamura S (2004) A novel application of myocardial contrast echocardiography to evaluate angiogenesis by autologous bone marrow cell transplantation in chronic ischemic pig model. J Am Coll Cardiol 7:1299–1305

    Article  Google Scholar 

  92. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    Google Scholar 

  93. Muller-Ehmsen J, Peterson KL, Kedes L, Whittaker P, Dow JS, Long TI, Laird PW, Kloner RA (2002) Rebuilding a damaged heart: long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation 105:1720–1726

    Google Scholar 

  94. Scorsin M, Marotte F, Sabri A, Le Dref O, Demirag M, Samuel JL, Rappaport L, Menasche P (1996) Can grafted cardiomyocytes colonize peri-infarcted myocardial areas? Circulation 94[Suppl II]:337–340

    Google Scholar 

  95. Scorsin M, Hagege AA, Marotte F, Mirochnik N, Copin H, Barnoux M, Sabri A, Samuel JL, Rappaport L, Menasche P (1997) Does transplantation of cardiomyocytes improve function of infarcted myocardium? Circulation 96[Suppl II]:188–193

    Google Scholar 

  96. Schaechinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, Abolmaali ND, Vogl TJ, Hofmann W-K, Martin H, Dimmeler S, Zeiher AM (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol 44:1690–1699

    Article  Google Scholar 

  97. Crich SG, Biancone L, Cantaluppi V, Duo D, Esposito G, Russo S, Camussi G, Aime S (2004) Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magn Reson Med 51:938–944

    Article  CAS  PubMed  Google Scholar 

  98. Meoli DF, Sadeghi MM, Krassilnikova S, Bourke BN, Giordano FJ, Dione DP, Su H, Edwards S, Hiu S, Harris TD, Madri JA, Zaret BL, Sinusas AJ (2004) Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest 113:1684–1691

    Article  Google Scholar 

Download references

Acknowledgements

Studies in this review were supported by a grant from National Institutes of Health #RO1 HL72956 to Dr Saeed. Dr Henk was a postdoctoral fellow in the Department of Radiology, University of California–San Francisco and is supported by the Max-Kade Foundation, New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saeed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeed, M., Saloner, D., Weber, O. et al. MRI in guiding and assessing intramyocardial therapy. Eur Radiol 15, 851–863 (2005). https://doi.org/10.1007/s00330-004-2622-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-004-2622-8

Keywords

Navigation