Skip to main content
Log in

Physiological diversity of bacterial communities from different soil locations on Livingston Island, South Shetland archipelago, Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Terrestrial food webs of Antarctica are simple and dominated by microorganisms. Soil bacteria play an important role in nutrient cycling, yet little is known about their capacity to utilize different carbon sources and to participate in site nutrient turnover. Biolog EcoPlate™ was applied to study the catabolic activity and physiological diversity of bacteria inhabiting the soil of moss, vascular plants, and fell field habitats from Livingston Island, Antarctica. Additionally, the number of oligotrophic and copiotrophic bacteria was counted by the agar plate method. Results indicated a lack of site-specific distribution of bacterial abundance, in contrast to bacterial catabolic activity and community level physiological profiles. Community level physiological profiles revealed a common capacity of soil bacteria to intensively utilize polyols, which are cryoprotectants widely produced by Antarctic organisms, as well as site-specific phenolic compounds (vegetated habitats), amino acids/amines (moss habitats), carbohydrates and carboxylic acids (fell field habitat). It was concluded that the physiology of soil bacteria is habitat specific concerning both the rate of catabolic activity and pattern of carbon source utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AWCD:

Average well color development

AWCDN:

Normalized average well color development

CLPP:

Community level physiological profile

CV:

Coefficient of variability

FTC:

Freeze–thaw cycle

References

  • Aislabie JM, Chhour KL, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soil of marble point and Wright valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056

    Article  CAS  Google Scholar 

  • Aislabie JM, Jordan S, Barker GM (2008) Relation between soil classification and bacterial diversity in soil of the Ross Sea region, Antarctica. Geoderma 144:9–20

    Article  CAS  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Bañón M (2001) Observaciones meteorológicas en la Base Antártica Española Juan Carlos I. Monografía A-151, Instituto Nacional de Meteorología, Ministerio Medio Ambiente, Madrid

  • Bölter M (1990) Microbial ecology of soil from Wilkes Land Antarctica: 1. The bacterial population ant its activity in relation to dissolved organic matter. Proc NIPR Symp Polar Biol 3:104–119

    Google Scholar 

  • Bölter M (1992) Environmental conditions and microbiological properties from soils and lichens from Antarctica (Casey station, Wilkes Land). Polar Biol 11:591–599

    Article  Google Scholar 

  • Bölter M, Kandeler E, Pieter SJ, Seppelt RD (2002) Heterotrophic microbes, microbial and enzymatic activity in Antarctic soils. In: Beyer L, Bölter M (eds) Geoecology of antarctic ice-free coastal landscapes. Springer, Berlin, pp 190–207

    Google Scholar 

  • Bradley WC, Lind OT (2007) Multiple carbon substrate utilization by bacteria at the sediment-water interface: seasonal patterns in a stratified eutrophic reservoir. Hydrobiol 586:43–56

    Article  Google Scholar 

  • Bravo LA, Griffith M (2004) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56:1189–1196

    Article  Google Scholar 

  • Buyer JS, Drinkwater LE (1997) Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities. J Microbiol Methods 30:3–11

    Article  CAS  Google Scholar 

  • Buyer JS, Roberts DP, Millner P, Russek-Cohen E (2001) Analysis of fungal communities by sole carbon source utilization profiles. J Microbiol Methods 45:53–60

    Article  PubMed  CAS  Google Scholar 

  • Calbrix R, Laval K, Barray S (2005) Analysis of the potential functional diversity of the bacterial community in soil: a reproducible procedure using sole-carbon-source utilization profiles. Eur J Soil Biol 41:11–20

    Article  CAS  Google Scholar 

  • Cavicchioli R, Thomas T, Curmi PMG (2000) Cold stress response in Archaea. Extremophiles 4:321–331

    Article  PubMed  CAS  Google Scholar 

  • Chapman BE, Roser DJ, Seppeltz RD (1994) 13C NMR analysis of Antarctic cryptogam extracts. Antarc Sci 6:295–305

    Article  Google Scholar 

  • Chipev N, Veltchev K (1996) Livingston Island: an environment for antarctic life. In: Golemansky V, Chipev N (eds) Bulgarian antarctic research. Life Sciences. Pensoft Pub, Sofia, pp 1–10

    Google Scholar 

  • Christie P (1987) Nitrogen in two contrasting Antarctic bryophyte communities. J Ecol 75:73–94

    Article  CAS  Google Scholar 

  • Clarke B, Gorley R (2005) PRIMER 6 LTd. 3 Meadow View, Lutton Ivybridge PL21 9RH, UK

  • Close DC, McArthur C (2002) Rethinking the role of many plant phenolics: protection from photodamage not herbivores? Oikos 99:166–172

    Article  CAS  Google Scholar 

  • Convey P (1996) The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol Rev Cambridge Philos Soc 71:191–225

    Article  Google Scholar 

  • Davis RC (1986) Environmental factors influencing decomposition rates in two Antarctic moss communities. Polar Biol 5:95–103

    Article  Google Scholar 

  • Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants. Cryobiology 30:322–328

    Article  Google Scholar 

  • Eriksson M, Ka JO, Mohn WW (2001) Effects of low temperature and freeze–thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl Environ Microbiol 67:5107–5112

    Article  PubMed  CAS  Google Scholar 

  • Feild TS, Lee DW, Holbrook NM (2001) Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol 127:566–574

    Article  PubMed  CAS  Google Scholar 

  • Ganzert L, Wagner D (2007) Microbial communities in different Antarctic mineral soils characterized by denaturing gradient gel electrophoresis (DGGE) in Antarctica: a keystone in a changing world. In: Cooper AK, Raymond CR et al (eds) Online proceedings of the 10th ISAES X, USGS open-file report 2007-1047, Extended Abstract, pp 174–178

  • Ganzert L, Lipski A, Hubberten H-W, Wagner D (2011) The impact of different soil parameters on the community structure of dominant bacteria from nine different soils on Livingston Island, South Shetland Archipelago, Antarctica. FEMS Microbiol Ecol 76:476–491

    Article  PubMed  CAS  Google Scholar 

  • Garland JL (1997) Analysis and interpretation of community level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24:289–300

    Article  CAS  Google Scholar 

  • Garland JL, Milles AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-sources utilization. Appl Environ Microbiol 57:2351–2359

    PubMed  CAS  Google Scholar 

  • Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    Article  PubMed  CAS  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role pf polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evo 6:238–243

    Article  Google Scholar 

  • Heal OW, Block W (1987) Soil biological process in the North and South. Ecol Bull 38:47–57

    Google Scholar 

  • Hill PW, Farrar J, Roberts P, Farrell M, Grant H, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011) Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nature Clim Change 1:50–53

    Article  CAS  Google Scholar 

  • Kashama J, Prince V, Simao-Beaunoir A-M, Beaulieu C (2009) Carbon utilization profile of bactyeria colonizing the headbox water of two paper machines in a Canadian mill. J Indust Microbiol Biotech 36:391–399

    Article  CAS  Google Scholar 

  • Kenarova AE, Bogoev VM (2002) The abundance and substrate profile of heterotrophic microorganisms from soils of different habitats from Livingston Island: Antarctica. In: Golemanski V, Chipev N (eds) Bulgarian antarctic research, vol 3. Sofia Moscow, Pensoft, pp 15–20

    Google Scholar 

  • Koleshko O (1981) Ecology of soil microorganisms. Vysshaya Shkola, Minsk

    Google Scholar 

  • Kupferwasser LI, Yeaman MR, Nast CC, Kupferwasser D, Xiong Y-Q, Palma M, Cheung AL, Bayer AS (2003) Salicylic acid attenuates virulence in endovascular infections by targeting global regulatory pathways in Staphylococcus aureus. J Clin Invest 112:222–233

    PubMed  CAS  Google Scholar 

  • Leflaive J, Danger M, Lacroix G, Lyautey E, Oumarou C, Ten-Hage L (2008) Nutrient effects on the genetic and functional diversity of aquatic bacterial communities. Microbiol Ecol 66:379–390

    Article  CAS  Google Scholar 

  • Lõhmus K, Truu M, Truu J, Ostonen I, Kaar E, Vares A, Uri V, Alama S, Kanal A (2006) Functional diversity of culturable bacteria communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forest, abandoned agricultural and oil-shale mining areas. Plant Soil 283:1–10

    Article  Google Scholar 

  • Lyons MM, Dobbs FC (2012) Differential utilization of carbon substrates by aggregate-associated and water-associated heterotrophic bacterial communities. Hydrobiol 686:181–193

    Article  CAS  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measures. Croom Helm Ltd, London

    Book  Google Scholar 

  • Mallosso E, English L, Hopkins DW, O’Donnell AG (2005) Community level physiological profile response to plant residue additions in Antarctic soils. Biol Fert Soils 42:60–65

    Article  Google Scholar 

  • Matsunaga T, Burgess JG, Yamada N, Komatsu K, Yoshida S, Wachi Y (1993) An ultraviolet (UV-A) absorbing biopterin glucoside from the marine planktonic cyanobacterium Oscillatoria sp. Appl Microbiol Biot 39:250–253

    CAS  Google Scholar 

  • Meier CL, Suding KN, Bowman WD (2008) Carbon flux from plants to soil: roots are a below-ground source of phenolic secondary compounds in an alpine ecosystem. J Ecol 96:421–430

    Article  CAS  Google Scholar 

  • Melick DR, Bolter M, Moller R (1994) Rates of soluble carbohydrate utilization in soils from the Windmill Islands Oasis, Wilkes Land, continental Antarctica. Polar Biol 14:59–64

    Article  Google Scholar 

  • Metaxatos A, Panagiotopoulos C, Ignatiades L (2003) Monosaccharide and aminoacid composition of mucilage material produced from a mixture of four phytoplanktonic taxa. J Exp Mar Biol Ecol 294:203–217

    Article  CAS  Google Scholar 

  • Mutikainen P, Walls M, Ovaska J, Keinanen M, Julkunen-Tiitto R, Vapaavuori E (2002) Costs of herbivore resistance in clonal saplings of Betula pendula. Oecologia 133:364–371

    Article  Google Scholar 

  • Nichols DS, Bowman JP, Sanderson K, Mancuso-Nichols C, Lewis TE, Mc Meekin TA, Nichols PD (1999) Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotech 10:240–246

    Article  PubMed  CAS  Google Scholar 

  • Nichols DS, Miller MR, Davies NM, Goodchield A, Raftery M, Cavicchioli R (2004) Cold adaptation in the Antarctic archeon Methanococcoides burtonii involves membrane lipid unsaturation. J Bacteriol 186:8508–8515

    Article  PubMed  CAS  Google Scholar 

  • Nichols CM, Lardière SG, Bowman JP, Nichols PD, Gibson JAE, Guézennec J (2005) Chemical characterization of exopolysaccharides from antarctic marine bacteria. Microb Ecol 49:578–589

    Article  PubMed  CAS  Google Scholar 

  • Novis PM, Whitehead D, Gregorich EG, Hunt JE, Sparrow AD, Hopkins DW, Elberling B, Greenfield LG (2007) Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Glob Change Biol 13:1224–1237

    Article  Google Scholar 

  • Peet RK (1974) The measurement of species diversity. Ann Rev Ecol Syst 5:258–307

    Article  Google Scholar 

  • Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys, Leiden

    Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles: a critique. FEMS Microbiol Ecol 42:1–14

    PubMed  CAS  Google Scholar 

  • Raykovska Y, Chipeva V, Topalova Y, Chipev N, Moncheva P (2005) Diverity of soil microbial communities in Livingston Island: antarctica. Ecol Eng Environ Protect 1:28–35

    Google Scholar 

  • Roberts P, Newsham KK, Bardgett RD, Farrar JF, Jones DL (2009) Vegetation cover regulates the quantity, quality and temporal dynamics of dissolved organic carbon and nitrogen in Antarctic soils. Polar Biol 32:999–1008

    Article  Google Scholar 

  • Roser DJ, Melick DR, Ling HU, Seppelt RD (1992) Polyol and sugar content of terrestrial plants from continental Antarctica. Antarct Sci 4:413–420

    Google Scholar 

  • Sala MM, Arin L, Balagué V, Felipe J, Guadayol Ò, Vaqué D (2005) Functional diversity of bacterioplankton assemblages in western Antarctic seawaters during late spring. Mar Ecol Prog Ser 292:13–21

    Article  CAS  Google Scholar 

  • Sanchez-Moreiras AM, Weiss O, Reigosa MJ (2004) Allelopathic evidence in Poaceae. Bot Rev 69:300–319

    Article  Google Scholar 

  • Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155

    Article  PubMed  CAS  Google Scholar 

  • Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421

    Article  PubMed  Google Scholar 

  • Stephan A, Meyer AH, Schmid B (2000) Plant diversity affects culturable soil bacteria in experimental grassland communities. J Ecol 88:988–998

    Article  Google Scholar 

  • Tearle PV (1987) Cryptogamic carbohydrate release and microbial response during spring freeze: thaw cycles in Antarctic fellfield fines. Soil Biol Biochem 19:381–390

    Article  CAS  Google Scholar 

  • Thomas DN (2005) Photosynthetic microbes in freezing deserts. Trends Microbiol 13:87–88

    Article  PubMed  CAS  Google Scholar 

  • Toro M, Camacho A, Rochern C, Rico E, Bañón M, Fernández-Valiente E, Marco E, Justel A, Vincent WF, Avendaño MC, Ariosa Y, Quesada A (2007) Limnological characteristics of the freshwater ecosystems of Byers Peninsula Livingston Island, in maritime Antarctica. Polar Biol 30:635–649

    Article  Google Scholar 

  • Van der Marwe T, Wolfaardt F, Riedel K-H (2003) Analysis of the functional diversity of the microbial communities in a paper-mill water system. Water SA 29:31–35

    Google Scholar 

  • Vasyukova NI, Ozeretskovskaya OL (2007) Induced plant resistance and salicylic acid: a review. Appl Biochem Microb 43:367–373

    Article  CAS  Google Scholar 

  • Viera G, Ramos M (2003) Geographic factors and geological activity in Livingston Island, Antarctica. Preliminary results. In: Phillips M, Springmen S, Arenson SM (eds) Proceedings of the 8th international conference on permafrost. Balkema Publishers, Lisse, pp 1183–1188

  • Villaescusa JA, Casamayor EO, Rochera C, Velázquez D, Chicote A, Quesada A, Camacho A (2010) A close link between bacterial community composition and environmental heterogeneity in maritime Antarctic lakes. Inter Microbiol 13:67–77

    CAS  Google Scholar 

  • Vincent WF, Castenholz RW, Downes MT, Howard-Williams C (1993) Antarctic cyanobacteria: light, nutrients and photosynthesis in the microbial mat environment. J Phycol 29:745–755

    Article  Google Scholar 

  • Waller CL, Worland MR, Convey P, Barnes DKA (2006) Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biol 29:1077–1083

    Article  Google Scholar 

  • Yamashita Y, Nakamura N, Omiya K, Nishikawa J, Kawahara H, Obata H (2002) Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci Biotech Biochem 66:239–247

    Article  CAS  Google Scholar 

  • Yergeau E, Kowalchuk GA (2008) Responses of Antarctic soil microbial communities and associated functions to temperature and freeze–thaw cycle frequency. Environ Microbiol 10:2223–2235

    Article  PubMed  Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007a) Size and structure of bacterial, fungal and nematode communities along an Antarctic environment gradient. FEMS Microbiol Ecol 59:436–451

    Article  PubMed  CAS  Google Scholar 

  • Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007b) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682

    Article  PubMed  CAS  Google Scholar 

  • Yergeau E, Schoondermark-Stolk SA, Brodie EL, Déjean S, DeSantis TZ, Gonalves O, Piceno YM, Andersen GL, Kowalchuk GA (2009) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351

    Article  PubMed  CAS  Google Scholar 

  • Zakhia F, Jungblut A-D, Taton A, Vincent WF, Wilmotte A (2008) Cyanobacteria in cold ecosystems. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Spring, Berlin, pp 121–135

    Chapter  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Valentin Andreev, member of the Bulgarian Antarctic Institute, for soil samples’ collection. This study was supported by the National Scientific Foundation of Bulgaria, Project D RNF 02.2.2009.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anelia Kenarova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenarova, A., Encheva, M., Chipeva, V. et al. Physiological diversity of bacterial communities from different soil locations on Livingston Island, South Shetland archipelago, Antarctica. Polar Biol 36, 223–233 (2013). https://doi.org/10.1007/s00300-012-1254-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1254-8

Keywords

Navigation