Skip to main content

Advertisement

Log in

Antarctic terrestrial biodiversity in a changing world

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Recent analyses of Antarctic terrestrial biodiversity data, in combination with molecular biological studies, have created a new paradigm that long-term persistence and regional isolation are general features of most of the major groups of Antarctic terrestrial biota, overturning the previously widely assumed view of a generally recent colonisation history. This paradigm, as well as incorporating a new and much longer timescale in which to consider the evolution and adaptation of Antarctic terrestrial biota, opens important new cross-disciplinary linkages with geologists and glaciologists seeking to unravel the history of the continent itself. This unique biota now faces the twin challenges of responding to the complex processes of climate change facing some parts of the continent, and the direct impacts associated with human occupation and activity. In many instances, this biota is likely to benefit, initially at least, from the current environmental changes, and there is an expectation of increased production, biomass, population size, community complexity, and colonisation. However, the impacts of climate change may themselves be outweighed by other, direct, impacts of human activities, and in particular, the introduction of non-indigenous organisms from which until recently the terrestrial ecosystems of the continent have been protected. The Antarctic research community and those responsible for governance under the Antarctic treaty system are faced with the pressing challenges of (1) ensuring there is sufficient baseline monitoring and survey activity to enable identification of these changes, however caused and (2) ensuring that effective operational management and biosecurity procedures are in place to minimise the threat from anthropogenic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams B, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell J, Frati F, Hogg I, Newsham N, O’Donnell A, Russell N, Seppelt R, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018

    Article  CAS  Google Scholar 

  • Allegrucci G, Carchini G, Todisco V, Convey P, Sbordoni V (2006) A molecular phylogeny of Antarctic Chironomidae and its implications for biogeographical history. Polar Biol 29:320–326

    Article  Google Scholar 

  • Andrássy I (1998) Nematodes in the sixth continent. J Nematode Syst Morphol 1:107–186

    Google Scholar 

  • Anon (2009) Convention on biological diversity. http://www.cbd.int/

  • Ayres E, Nkem JN, Wall DH, Adams BJ, Barrett JE, Broos EJ, Parsons AN, Powers LE, Simmons BL, Virginia RA (2008) Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica. Conservation Biol 22:1544–1551

    Article  Google Scholar 

  • Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FKY, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nature Commun 2:163. doi:10.1038/ncomms1167

    Article  CAS  Google Scholar 

  • Bargagli R (2005) Antarctic ecosystems. Environmental contamination, climate change, and human impact. Ecological studies 175. Springer, Berlin

    Google Scholar 

  • Barnes DK, Hodgson DA, Convey P, Allen CS, Clarke A (2006) Incursion and excursion of Antarctic biota: past, present and future. Global Ecol Biogeogr 15:121–142

    Article  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Doran PT, Fountain AG, Welch KA, Lyons WB (2008) Persistent effects of a discrete warming event on a polar desert ecosystem. Global Change Biol 14:2249–2261

    Article  Google Scholar 

  • Bergstrom DM, Chown SL (1999) Life at the front: history, ecology and change on southern ocean islands. Trends Ecol Evol 14:472–476

    Article  PubMed  Google Scholar 

  • Bergstrom DM, Convey P, Huiskes AHL (eds) (2006) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht

    Google Scholar 

  • Bergstrom DM, Lucieer A, Kiefer K, Wasley J, Belbin L, Pedersen TK, Chown SL (2009) Indirect effects of invasive species removal devastate World Heritage Island. J. Appl Ecol 46:73–81

    Article  Google Scholar 

  • Beyer L, Bölter M (2002) Geoecology of Antarctic ice free coastal landscapes. Springer, Berlin

    Book  Google Scholar 

  • Block W (1984) Terrestrial microbiology, invertebrates and ecosystems. In: Laws RM (ed) Antarctic ecology. Academic Press, London, pp 163–236

    Google Scholar 

  • Block W, Convey P (2001) Seasonal and long-term variation in body water content of an Antarctic springtail—a response to climate change? Polar Biol 24:764–770

    Article  Google Scholar 

  • Boenigk J, Pfandl K, Garstecki T, Harms H, Novarino G, Chatzinotas A (2006) Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl Environm Microbiol 72:5159–5164

    Article  CAS  Google Scholar 

  • Bokhorst S, Huiskes A, Convey P, Aerts R (2007a) The effect of environmental change on vascular plant and cryptogam communities along a latitudinal gradient from the Falkland Islands to the Maritime Antarctic. BMC Ecol 7:15. doi:10.1186/1472-6785-7-15

    Article  PubMed  Google Scholar 

  • Bokhorst S, Huiskes A, Convey P, Aerts R (2007b) Climate change effects on decomposition rates in ecosystems from the Maritime Antarctic and Falkland Islands. Global Change Biol 13:2642–2653

    Article  Google Scholar 

  • Bokhorst S, Huiskes A, Convey P, van Bodegom PM, Aerts R (2008) Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol Biochem 40:1547–1556

    Article  CAS  Google Scholar 

  • Bokhorst S, Huiskes A, Convey P, Sinclair BJ, Lebouvier M, van de Vijver B, Wall DH (in press) Passive warming methods in Antarctica: implications for microclimate and terrestrial biota. Polar Biol

  • Bonner WN (1984) Introduced mammals. In: Laws RM (ed) Antarctic ecology, vol 1. Academic Press, London, pp 237–278

    Google Scholar 

  • Butler HG (1999) Seasonal dynamics of the planktonic microbial community in a maritime Antarctic lake undergoing eutrophication. J Plankton Res 21:2393–2419

    Article  Google Scholar 

  • Campbell IB, Claridge GGC, Balks MR (1998) Short and long-term impacts of human disturbance on snow-free surfaces in Antarctica. Polar Record 34(188):15–24

    Article  Google Scholar 

  • Chapuis JL, Boussès P, Barnaud G (1994) Alien mammals, impact and management in the French subantarctic islands. Biol Conserv 67:97–104

    Article  Google Scholar 

  • Chapuis JL, Frenot Y, Lebouvier M (2004) Recovery of native plant communities after eradication of rabbits from the subantarctic Kerguelen Islands, and influence of climate change. Biol Conserv 117:167–179

    Article  Google Scholar 

  • Chevrier M, Vernon P, Frenot Y (1997) Potential effects of two alien insects on a subantarctic wingless fly in the Kerguelen Islands. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 424–431

    Google Scholar 

  • Chown SL, Convey P (2007) Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Phil Trans Roy Soc ser B 362:2307–2331

    Article  Google Scholar 

  • Chown SL, Convey P (in press) Spatial and temporal variability in terrestrial Antarctic biodiversity. In: Rogers AD, Murphy E, Clarke A, Johnston NM (eds) Antarctica: an extreme environment in a changing world. Wiley-Blackwell, London

  • Chown SL, Smith VR (1993) Climate change and the short-term impact of feral house mice at the sub-antarctic Prince Edward Islands. Oecologia 96:508–518

    Article  Google Scholar 

  • Clark MS, Peck LS (2009) HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review. Marine Genomics 2:11–18

    Article  PubMed  Google Scholar 

  • Clarke A, Barnes DKA, Hodgson DA (2005) How isolated is Antarctica? Trends Ecol Evol 20:1–3

    Article  PubMed  Google Scholar 

  • Convey P (1996) Reproduction of Antarctic flowering plants. Antarct Sci 8:127–134

    Google Scholar 

  • Convey P (2001a) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1. Academic Press, San Diego, pp 171–184

  • Convey P (2001b) Terrestrial ecosystem response to climate changes in the Antarctic. In: Walther G-R, Burga CA, Edwards PJ (eds) “Fingerprints” of climate change—adapted behaviour and shifting species ranges. Kluwer, New York, pp 17–42

    Google Scholar 

  • Convey P (2003) Maritime Antarctic climate change: signals from terrestrial biology. In: Domack E, Burnett A, Leventer A, Convey P, Kirby M, Bindschadler R (eds) Antarctic Peninsula climate variability: historical and palaeoenvironmental perspectives. Antarctic research series, vol 79. American Geophysical Union, Washington, DC, pp 145–158

    Chapter  Google Scholar 

  • Convey P (2006) Antarctic climate change and its influences on terrestrial ecosystems. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 253–272

    Chapter  Google Scholar 

  • Convey P (2007a) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, 2nd (online) ed. Elsevier, San Diego. doi:10.1016/B0-12-226865-2/00014-6

  • Convey P (2007b) Influences on and origins of terrestrial biodiversity of the sub-Antarctic islands. Pap Proc Roy Soc Tasmania 141:83–93

    Google Scholar 

  • Convey P (2008) Non-native species in Antarctic terrestrial and freshwater environments: presence, sources, impacts and predictions. In: Rogan-Finnemore M (ed) Non-native species in the Antarctic, proceedings. Gateway Antarctica, Christchurch, pp 97–130

  • Convey P (2010a) Terrestrial biodiversity in Antarctica—recent advances and future challenges. Polar Sci 4:135–147

    Google Scholar 

  • Convey P (2010b) Life history adaptations to polar and alpine environments. In: Denlinger DL, Lee RE Jr (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 297–321

    Chapter  Google Scholar 

  • Convey P, Lebouvier M (2009) Environmental change and human impacts on terrestrial ecosystems of the sub-Antarctic islands between their discovery and the mid-twentieth century. Pap Proc Roy Soc Tasmania 143:33–44

    Google Scholar 

  • Convey P, McInnes SJ (2005) Exceptional, tardigrade dominated, ecosystems from Ellsworth Land, Antarctica. Ecology 86:519–527

    Article  Google Scholar 

  • Convey P, Smith RIL (2006) Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecol 182:1–10

    Google Scholar 

  • Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878

    Article  PubMed  CAS  Google Scholar 

  • Convey P, Wynn-Williams DD (2002) Antarctic soil nematode response to artificial environmental manipulation. Eur J Soil Biol 38:255–259

    Article  Google Scholar 

  • Convey P, Smith RIL, Peat HJ, Pugh PJA (2000) The terrestrial biota of Charcot Island, eastern Bellingshausen Sea, Antarctica an example of extreme isolation. Antarct Sci 12:406–413

    Article  Google Scholar 

  • Convey P, Pugh PJA, Jackson C, Murray AW, Ruhland CT, Xiong FS, Day TA (2002) Response of Antarctic terrestrial arthropods to long-term climate manipulations. Ecology 83:3130–3140

    Article  Google Scholar 

  • Convey P, Block W, Peat HJ (2003) Soil arthropods as indicators of water stress in Antarctic terrestrial habitats? Global Change Biol 9:1718–1730

    Article  Google Scholar 

  • Convey P, Frenot F, Gremmen N, Bergstrom D (2006) Biological invasions. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 193–220

    Chapter  Google Scholar 

  • Convey P, Gibson J, Hillenbrand C-D, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117

    Article  PubMed  Google Scholar 

  • Convey P, Bindschadler RA, di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski P, Summerhayes CP, Turner J (2009a) Antarctic climate change and the environment. Antarct Sci 21:541–563

    Article  Google Scholar 

  • Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand C-D, Barnes DKA, Clarke A, Pugh PJA, Linse K, Cary SC (2009b) Exploring biological constraints on the glacial history of Antarctica. Quatern Sci Rev 28:3035–3048

    Article  Google Scholar 

  • Convey P, Key RS, Key RJD (2010) The establishment of a new ecological guild of pollinating insects on sub-Antarctic South Georgia. Antarct Sci 22:508–512

    Article  Google Scholar 

  • Convey P, Key RS, Key RJD, Belchier M, Waller CL (2011) Recent range expansions in non-native predatory carabid beetles on sub-Antarctic South Georgia. Polar Biol 34:597–602

    Article  Google Scholar 

  • Convey P, Barnes DKA, Griffiths H, Grant S, Linse K, Thomas DN (in press) Biogeography and regional classifications of Antarctica. In: Rogers AD, Murphy E, Clarke A, Johnston NM (eds) Antarctica: An extreme environment in a changing world. Wiley-Blackwell, London

  • Cowan DA, Russell NJ, Mamais A, Sheppard DM (2002) Antarctic dry valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436

    Article  PubMed  CAS  Google Scholar 

  • Cowan DA, Chown SL, Convey P, Tuffin M, Hughes K, Pointing S, Vincent W (in press) Non-indigenous microorganisms in the Antarctic—assessing the risks. Trends Microbiol

  • Day TA (2001) Multiple trophic levels in UV-B assessments—completing the ecosystem. New Phytol 152:183–186

    Article  Google Scholar 

  • Day TA, Ruhland CT, Grobe CW, Xiong F (1999) Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119:24–35

    Article  Google Scholar 

  • Day TA, Ruhland CT, Xiong F (2001) Influence of solar UV-B radiation on Antarctic terrestrial plants: results from a 4-year field study. J Photochem Photobiol B: Biol 62:78–87

    Article  CAS  Google Scholar 

  • De Wever A, Leliaert F, Verleyen E, Vanormelingen P, Van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc Roy Soc Lond Ser B. doi:10.1098/rspb.2009.0994

  • Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–520

    Article  PubMed  CAS  Google Scholar 

  • Favero-Longo SE, Cannone N, Worland MR, Convey P, Piervittori R, Guglielmin M (2011) Changes in lichen vegetation with fur seal population increase on Signy Island (South Orkney Islands, Maritime Antarctic). Antarct Sci 23:65–77

    Article  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Fowbert JA, Smith RIL (1994) Rapid population increase in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arct Alpine Res 26:290–296

    Article  Google Scholar 

  • Freckman DW, Virginia RA (1997) Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78:363–369

    Article  Google Scholar 

  • Frenot Y, Chown SL, Whinam J, Selkirk P, Convey P, Skotnicki M, Bergstrom D (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72

    Article  PubMed  Google Scholar 

  • Frenot Y, Convey P, Lebouvier M, Chown SL, Whinam J, Selkirk PM, Skotnicki M, Bergstrom DM (2008) Antarctic biological invasions: sources, extents, impacts and implications. In: Rogan-Finnemore M (ed) Non-native species in the Antarctic, proceedings. Gateway Antarctica, Christchurch, pp 53–96

  • Gaston KJ, Jones AG, Hänel C, Chown SL (2003) Rates of species introduction to a remote oceanic island. Proc Roy Soc Lond ser B 270:1091–1098

    Article  Google Scholar 

  • Gerighausen U, Bräutigam K, Mustafa O, Peter H-U (2003) Expansion of vascular plants on an Antarctic island–a consequence of climate change? In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RMC, van der Vies SM, Wolff WS (eds) Antarctic biology in a global context. Backhuys, Leiden, pp 79–83

    Google Scholar 

  • Grant S, Convey P, Hughes KA, Phillips RA, Trathan PN (in press) Conservation and management of Antarctic ecosystems. In: Rogers AD, Murphy E, Clarke A, Johnston NM (eds) Antarctica: an extreme environment in a changing world. Wiley-Blackwell, London

  • Greenslade P (2006) The invertebrates of Macquarie Island. Australian Antarctic Division, Kingston

    Google Scholar 

  • Greenslade P (2010) South Shetlands Collembola fauna revisited. Antarct Sci 22:233–242

    Article  Google Scholar 

  • Gremmen N, Smith V (2004) The flora of Marion and Prince Edward Islands. Data Analyse Ecologie, Diever

    Google Scholar 

  • Gremmen NJM, Smith VR, van Tongeren OFR (2003) Impact of trampling on the vegetation of subantarctic Marion Island. Arct Antarct Alpine Res 35:442–446

    Article  Google Scholar 

  • Hänel C, Chown SL (1998) The impact of a small, alien macro-invertebrate on a sub-Antarctic terrestrial ecosystem: Limnophyes minimus Meigen (Diptera, Chironomidae) at Marion Island. Polar Biol 20:99–106

    Article  Google Scholar 

  • Hodgson DA, Johnston NM (1997) Inferring seal populations from lake sediments. Nature 387:30–31

    Article  CAS  Google Scholar 

  • Hodgson DA, Johnston NM, Caulkett AP, Jones VJ (1998) Palaeolimnology of Antarctic fur seal Arctocephalus gazella populations and implications for Antarctic management. Biol Conserv 83:145–154

    Article  Google Scholar 

  • Hodgson DA, Roberts D, McMinn A, Verleyen E, Terry B, Corbett C, Vyverman W (2006) Recent rapid salinity rise in three East Antarctic lakes. J Paleolimnol 36:385–406

    Article  Google Scholar 

  • Hogg ID, Cary SC, Convey P, Newsham K, O’Donnell T, Adams BJ, Aislabie J, Frati FF, Stevens MI, Wall DH (2006) Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol Biochem 38:3035–3040

    Article  CAS  Google Scholar 

  • Hughes KA (2010) How committed are we to monitoring human impacts in Antarctica? Environ Res Lett 5:041002

    Article  Google Scholar 

  • Hughes KA, Convey P (2010) The protection of Antarctic terrestrial ecosystems from inter and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Glob Environ Change Human Policy Dimens 20:96–112

    Google Scholar 

  • Hughes KA, Convey P (in review) Determining the native/non-native status of newly discovered terrestrial and freshwater species in Antarctica—current knowledge, methodology and management action. J Environ Manag

  • Hughes KA, Worland MR (2010) Spatial distribution, habitat preference and colonisation status of two alien terrestrial invertebrate species in Antarctica. Antarct Sci 3:221–231

    Article  Google Scholar 

  • Hughes KA, McCartney HA, Lachlan-Cope TA, Pearce DA (2004) A preliminary study of airborne microbial biodiversity over peninsular Antarctica. Cell Mol Biol 50:537–542

    PubMed  CAS  Google Scholar 

  • Hughes KA, Walsh S, Convey P, Richards S, Bergstrom D (2005) Alien fly populations established at two Antarctic research stations. Polar Biol 28:568–570

    Article  Google Scholar 

  • Hughes KA, Ott S, Bölter M, Convey P (2006) Colonisation processes. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 35–54

    Chapter  Google Scholar 

  • Hughes KA, Convey P, Maslen NR, Smith RIL (2010) Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. Biol Invasions 12:875–891

    Article  Google Scholar 

  • Kaup E, Burgess JS (2002) Surface and subsurface flows of nutrients in natural and human impacted catchments on Broknes, Larsemann Hills, Antarctica. Antarct Sci 14:343–352

    Article  Google Scholar 

  • Kennedy AD (1994) Simulated climate change: a field manipulation study of polar microarthropod community response to global warming. Ecography 17:131–140

    Article  Google Scholar 

  • Kennedy AD (1995a) Antarctic terrestrial ecosystem response to global environmental change. Annu Rev Ecol Syst 26:683–704

    Article  Google Scholar 

  • Kennedy AD (1995b) Simulated climate change: are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations? Global Change Biol 1:29–42

    Article  Google Scholar 

  • Kennedy AD (1996) Antarctic fellfield response to climate change: a tripartite synthesis of experimental data. Oecologia 107:141–150

    Article  Google Scholar 

  • Kennicutt MC II, Klein A, Montagna P, Sweet S, Wade T, Palmer T, Sericano J, Denoux G (2010) Temporal and spatial patterns of anthropogenic disturbance at McMurdo Station, Antarctica. Environ Res Lett 5:034010

    Article  CAS  Google Scholar 

  • Laparie M, Lebouvier M, Lalouette L, Renault D (2010) Variation of morphometric traits in populations of an invasive carabid predator (Merizodus soledadinus) within a sub-Antarctic island. Biol Invasions. doi:10.1007/s10530-010-9739-2

  • Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70:5963–5972

    Article  PubMed  CAS  Google Scholar 

  • Leader-Williams N (1988) Reindeer on South Georgia: the ecology of an introduced population. Cambridge University Press, Cambridge

    Google Scholar 

  • Lee JE, Chown SL (2009a) Breaching the dispersal barrier to invasion: quantification and management. Ecol Appl 19:1944–1959

    Article  PubMed  Google Scholar 

  • Lee JE, Chown SL (2009b) Quantifying the propagule load associated with the construction of an Antarctic research station. Antarct Sci 21:471–475

    Article  Google Scholar 

  • Lynch HJ, Crosbie K, Fagan WF, Naveen R (2010) Spatial patterns of tour ship traffic in the Antarctic Peninsula Region. Antarct Sci 22:123–130

    Article  Google Scholar 

  • Lyons WB, Laybourn-Parry J, Welch KA, Priscu JC (2006) Antarctic lake systems and climate change. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems, Antarctica as a global indicator. Springer, Dordrecht, pp 273–295

    Chapter  Google Scholar 

  • Marshall WA (1996) Biological particles over Antarctica. Nature 383:680

    Article  CAS  Google Scholar 

  • Maslen NR, Convey P (2006) Nematode diversity and distribution in the southern maritime Antarctic—clues to history? Soil Biol Biochem 38:3141–3151

    Article  CAS  Google Scholar 

  • McGaughran A, Toricelli G, Carapelli A, Frati F, Stevens MI, Convey P, Hogg ID (2010) Contrasting phylogeographic patterns for springtails reflect different evolutionary histories between the Peninsula and continental Antarctica. J Biogeog 37:103–119

    Article  Google Scholar 

  • McGraw JB, Day TA (1997) Size and characteristics of a natural seed bank in Antarctica. Arct Alpine Res 29:213–216

    Article  Google Scholar 

  • Mortimer E, Jansen van Vuuren B, Lee JE, Marshall DJ, Convey P, Daniels SR, Chown SL (2011) Mite dispersal among the Southern Ocean Islands and Antarctica before the last glacial maximum. Proc Roy Soc Lond Ser B doi:10.1098/rspb.2010.1779

  • Newsham KK, Robinson SA (2009) Responses of plants in polar regions to UVB exposure: a meta-analysis. Global Change Biol 15:2574–2589

    Article  Google Scholar 

  • Newsham KK, Hodgson DA, Murray AWA, Peat HJ, Smith RIL (2002) Response of two Antarctic bryophytes to stratospheric ozone depletion. Global Change Biol 8:972–983

    Article  Google Scholar 

  • Nielsen UN, Wall DH, Adams BJ, Virginia RA (2011) Antarctic nematode communities: observed and predicted responses to climate change. Polar Biol. doi:10.1007/s00300-011-1021-2

  • Nkem JN, Wall DH, Virginia RA, Barrett JE, Broos E, Porazinska DL, Adams BJ (2006) Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biol 29:346–352

    Article  Google Scholar 

  • Ochyra R, Smith RIL, Bednarek-Ochyra H (2008) The illustrated moss flora of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Ohtani S, Suvama K, Kanda H (2000) Environmental monitoring by means of soil algae and microorganisms in the vicinity of Syowa Station. Nankyoku Shiryo (Antarctic Record) 44:265–276

    Google Scholar 

  • Øvstedal DO, Smith RIL (2001) Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Parker BC, Simmons GM Jr, Wharton RA Jr, Seaburg KG, Love FG (1982) Removal of organic and inorganic matter from Antarctic lakes by aerial escape of bluegreen algal mats. J Phycol 18:72–78

    Article  Google Scholar 

  • Parnikoza I, Convey P, Dykyy I, Trakhimets V, Milinevsky G, Tyschenko O, Inozemtseva D, Kozeretska I (2009) Current status of the Antarctic herb tundra formation in the central Argentine Islands. Global Change Biol 15:1685–1693

    Article  Google Scholar 

  • Pearce DA, Bridge PD, Hughes KA, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157

    Article  PubMed  CAS  Google Scholar 

  • Peat HJ, Clarke A, Convey P (2007) Diversity and biogeography of the Antarctic flora. J Biogeog 34:132–146

    Article  Google Scholar 

  • Peck LS, Clark MS, Clarke A, Cockell CS, Convey P, Detrich HW III, Fraser KPP, Johnston IA, Methe BA, Murray AE, Römisch K, Rogers AD (2005) Genomics: applications to Antarctic ecosystems. Polar Biol 28:351–365

    Article  Google Scholar 

  • Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109

    Article  PubMed  Google Scholar 

  • Poland JS, Riddle MJ, Zeeb BA (2003) Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Rec 39:369–383

    Article  Google Scholar 

  • Pugh PJA, Convey P (2008) Surviving out in the cold: Antarctic endemic invertebrates and their refugia. J Biogeog 35:2176–2186

    Article  Google Scholar 

  • Quayle WC, Convey P (2006) Concentration, molecular weight distribution and carbohydrate composition of DOC in maritime Antarctic lakes of differing trophic status. Aquatic Geochem 12:161–178

    Article  CAS  Google Scholar 

  • Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Harrigan PR (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645

    Article  PubMed  CAS  Google Scholar 

  • Quayle WC, Convey P, Peck LS, Ellis-Evans JC, Butler HG, Peat HJ (2003) Ecological responses of maritime Antarctic lakes to regional climate change. In: Domack E, Burnett A, Leventer A, Convey P, Kirby M, Bindschadler R (eds) Antarctic Peninsula climate variability: historical and palaeoenvironmental perspectives. Antarctic research series, vol 79. American Geophysical Union, Washington, DC, pp 159–170

    Chapter  Google Scholar 

  • Quesada A, Vincent WF, Kaup E, Hobbie JE, Laurion I, Pienitz R, López-Martínez DuránJJ (2006) Landscape control of high latitude lakes in a changing climate. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems. Antarctica as a global indicator. Springer, Dordrecht, pp 221–252

    Chapter  Google Scholar 

  • Ruhland CT, Day TA (2001) Size and longevity of seed banks in Antarctica and the influence of ultraviolet-B radiation on survivorship, growth and pigment concentrations of Colobanthus quitensis seedlings. Environm Exp Bot 45:143–154

    Article  CAS  Google Scholar 

  • Scott JJ, Kirkpatrick JB (1994) Effects of human trampling on the sub-Antarctic vegetation of Macquarie Island. Polar Rec 30(174):207–220

    Article  Google Scholar 

  • Searles PS, Kropp BR, Flint SD, Caldwell MM (2001) Influence of solar UV-B radiation on peatland microbial communities of southern Argentina. New Phytol 152:213–221

    Article  Google Scholar 

  • Simmons BL, Wall DH, Adams BJ, Ayres E, Barrett JE, Virginia RA (2009) Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biol Biochem 41:2052–2060

    Article  CAS  Google Scholar 

  • Sinclair BJ (2002) Effects of increased temperatures simulating climate change on terrestrial invertebrates on Ross Island, Antarctica. Pedobiologia 46:150–160

    Article  Google Scholar 

  • Sjoling S, Cowan DA (2000) Detecting human bacterial contamination in Antarctic soils. Polar Biol 23:644–650

    Article  Google Scholar 

  • Slabber S, Chown SL (2002) The first record of a terrestrial crustacean, Porcellio scaber (Isopoda, Porcellionidae), from sub-Antarctic Marion Island. Polar Biol 25:855–858

    Google Scholar 

  • Smith RIL (1984) Terrestrial biology of the Antarctic and sub-Antarctic. In: Laws RM (ed) Antarctic ecology. Academic Press, London, pp 61–162

    Google Scholar 

  • Smith RIL (1988) Destruction of Antarctic terrestrial ecosystems by a rapidly increasing fur seal population. Biol Conserv 45:55–72

    Article  Google Scholar 

  • Smith RIL (1990) Signy island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. In: Kerry KR, Hempel G (eds) Antarctic ecosystems, ecological change and conservation. Springer, Berlin, pp 32–50

    Google Scholar 

  • Smith RIL (1993) The role of bryophyte propagule banks in primary succession: case study of an Antarctic fellfield soil. In: Miles J, Walton DWH (eds) Primary succession on land. Blackwell, Oxford, pp 55–78

    Google Scholar 

  • Smith RIL (1994) Vascular plants as indicators of regional warming in Antarctica. Oecologia 99:322–328

    Article  Google Scholar 

  • Smith RIL (2001) Plant colonization response to climate change in the Antarctic. Folia Fac Sci Nat Univ Masarykianae Brunensis, Geographia 25:19–33

    Google Scholar 

  • Smith RIL, Richardson M (2011) Fuegian plants in Antarctica: natural or anthropogenically assisted immigrants? Biol Invasions. doi:10.1007/s10530-010-9784-x

  • Smith VR (2002) Climate change in the subantarctic: an illustration from Marion Island. Clim Change 52:345–357

    Article  CAS  Google Scholar 

  • Snell KRS, Kokubun T, Griffiths H, Convey P, Hodgson DA, Newsham KK (2009) Quantifying the metabolic cost to an Antarctic liverwort of responding to UV-B radiation exposure. Global Change Biol 15:2563–2573

    Article  Google Scholar 

  • Sømme L (1995) Invertebrates in hot and cold arid environments. Springer, Berlin

    Google Scholar 

  • Stevens MI, Greenslade P, Hogg ID, Sunnucks P (2006) Examining Southern Hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882

    Article  PubMed  CAS  Google Scholar 

  • Stevens MI, Frati F, McGaughran A, Spinsanti G, Hogg ID (2007) Phylogeographic structure suggests multiple glacial refugia in northern Victoria Land for the endemic Antarctic springtail Desoria klovstadi, (Collembola, Isotomidae). Zool Scripta 36:201–212

    Article  Google Scholar 

  • Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289

    Article  PubMed  CAS  Google Scholar 

  • Tejedo P, Justel A, Benayas J, Rico E, Convey P, Quesada A (2009) Soil trampling in an Antarctic specially protected area: tools to assess levels of human impact. Antarct Sci 21:229–236

    Article  Google Scholar 

  • Tin T, Fleming Z, Hughes KA, Ainley D, Convey P, Moreno C, Pfeiffer S, Scott J, Snape I (2009) Impacts of local human activities on the Antarctic environment: a review. Antarct Sci 21:3–33

    Article  Google Scholar 

  • Trathan PN, Reid K (2009) Exploitation of the marine ecosystem in the sub-Antarctic: historical impacts and current consequences. Pap Proc Roy Soc Tasmania 143:9–14

    Google Scholar 

  • Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewski P, Summerhayes C (eds) (2009a) Antarctic climate change and the environment. Scientific Committee on Antarctic Research, Cambridge

    Google Scholar 

  • Turner J, Comiso JC, Marshall GJ, Lachlan-Cope TA, Bracegirdle TJ, Maksym T, Meredith MP, Wang Z, Orr A (2009b) Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett. doi:10.1029/2009GL037524

  • Tweedie CE, Bergstrom DM (2000) A climate change scenario for surface air temperature at subantarctic Macquarie Island. In: Davison W, Howard-Williams C, Broady PA (eds) Antarctic ecosystems: models for wider ecological understanding. New Zealand Natural Sciences, Christchurch, pp 272–281

    Google Scholar 

  • Vincent WF, MacIntyre S, Spigel RH, Laurion E (2008) The physical limnology of high-latitude lakes. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers—limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, Oxford, pp 65–81

    Google Scholar 

  • Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willem A, Peeters K, Van de Vijver B, De Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 4:103–113

    Article  Google Scholar 

  • Wall DH, Lyons WB, Convey P, Howard-Williams C, Quesada A, Vincent WF (2011) Long term ecosystem networks to record change: an international imperative. Antarct Sci 23:209

    Google Scholar 

  • Walther G-R, Post E, Convey P, Parmesan C, Menzel M, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Walton DWH (1984) The terrestrial environment. In: Laws RM (ed) Antarctic ecology. Academic Press, London, pp 1–60

    Google Scholar 

  • Whinam J, Chilcott N, Bergstrom DM (2004) Subantarctic hitchhikers: expeditioners as vectors for the introduction of alien organisms. Biol Conserv 121:207–219

    Article  Google Scholar 

  • Wynn-Williams DD (1996) Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microb Ecol 31:177–188

    Article  Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank the organisers of the Fourth SCAR Open Science Conference, Buenos Aires, for the invitation to present this paper at the meeting and contribute to this Special Issue and the Editor and B.A. Ball and an anonymous reviewer for helpful and constructive suggestions. This paper is an output of the BAS ‘Polar Science for Planet Earth’ core science programme and also contributes to the SCAR EBA programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Convey.

Additional information

This article is an invited contribution on Global Tipping Points (Global Change and Antarctic Terrestrial Biodiversity) and part of the SCAR EBA programme. I. Hogg and D. Wall (Guest Editors).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Convey, P. Antarctic terrestrial biodiversity in a changing world. Polar Biol 34, 1629–1641 (2011). https://doi.org/10.1007/s00300-011-1068-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1068-0

Keywords

Navigation