Skip to main content
Log in

Purple-leaved Ficus lyrata plants produced by overexpressing a grapevine VvMybA1 gene

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

This study established an efficient method of regenerating plants of Ficus lyrata and producing purple-leaved F. lyrata plants through genetic transformation using a VvMybA1 gene of grapevine.

Abstract

Ficus lyrata, a species with unique violin- or guitar-shaped leaves, was regenerated from leaf-derived calli cultured on Murashige and Skoog (MS) basal medium supplemented with 4.5 μM N-phenyl-N’-1, 2, 3-thiadiazol-5-yl urea (TDZ) and 0.5 μM α-naphthalene acetic acid (NAA). Leaf discs were inoculated with Agrobacterium tumefaciens strain EHA 105 harboring a binary vector DEAT that contains the VvMybA1 gene and neomycin phosphotransferase (npt II) gene and subsequently cultured on the established regeneration medium supplemented with 100 mg l−1 kanamycin. Results showed that 87.5 % of the leaf discs produced kanamycin-resistant callus, and 68.8 % of them produced adventitious shoots. Transgenic plants with three leaf colors including green, green-purple, and purple were produced. Regular and quantitative real-time PCR analyses confirmed the integration of transgenes into the host genome. Semi-quantitative RT-PCR analysis indicated that the VvMybA1 gene was responsible for the purple-colored phenotype. Purple-leaved plants with strong color stability grew vigorously in a greenhouse. This study illustrated the feasibility of using a genetically engineered VvMybA1 gene for drastic modification of leaf color of an important woody ornamental plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, Davies KM (2009) Light-induced vegetative anthocyanin pigmentation in Petunia. J Exp Bot 60:2191–2202

    Article  CAS  PubMed  Google Scholar 

  • Asif MH, Dhawan P, Nath P (2000) A simple procedure for the isolation of high quality RNA from ripening banana fruit. Plant Mol Bio Rep 18:109–115

    Article  CAS  Google Scholar 

  • Bradley JM, Davies KM, Deroles SC, Bloor SJ, Lewis DH (1998) The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia. Plant J 13:381–392

    Article  CAS  Google Scholar 

  • Chandler SF, Sanchez C (2012) Genetic modification; the development of transgenic ornamental plants varieties. Plant Biotechnol J 10:891–903

    Article  PubMed  Google Scholar 

  • Chen J, Henny RJ (2006) Somaclonal variation: an important source for cultivar development of floriculture crops. In: Teixeira da Silva JA (ed) Floriculture, Ornamental and Plant Biotechnology, vol II. Global Science Books, London, pp 244–253

    Google Scholar 

  • Chen J, McConnell DB, Norman DJ, Henny RJ (2005) The foliage plant industry. Hort Rev 31:47–112

    Google Scholar 

  • Cone KC, Cocciolone SM, Burr FA, Burr B (1993) Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell 5:1795–1805

    CAS  PubMed  Google Scholar 

  • Debergh P, De Wael J (1977) Mass propagation of Ficus lyrata. Acta Hort 78:361–364

    Google Scholar 

  • del Amo-Marco JB, Picazo-Gonzalez I (1992) Improvement of in vitro multiplication of F. lyrata from leaf explants and leaf callus by thidiazuron. Phyton Int J Exp Bot 53:51–56

    Google Scholar 

  • Deshpande SR, Josekutty PC, Prathapasenan G (1998) Plant regeneration from axillary buds of a mature tree of Ficus religiosa. Plant Cell Rep 17:571–573

    Article  CAS  Google Scholar 

  • Dutt M, Li ZT, Dhekney SA, Gray DJ (2008) A co-transformation system to produce transgenic grapevines free of marker genes. Plant Sci 175:423–430

    Article  CAS  Google Scholar 

  • Fang J, Chen J, Henny RJ, Chao CT (2007) Genetic relatedness of ornamental Ficus species and cultivars analyzed by amplified fragment length polymorphism markers. J Amer Soc Hort Sci 132:807–815

    CAS  Google Scholar 

  • Garfinkle M, Nester EJ (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144:732–743

    Google Scholar 

  • Geekiyanage S, Takase T, Ogura Y, Kiyosue T (2007) Anthocyanin production by over-expression of grape transcription factor gene VlmybA2 in transgenic tobacco and Arabidopsis. Plant Biotechnol Rep 1:11–18

    Article  Google Scholar 

  • Gill R, Saxena PK (1993) Somatic embryogenesis in Niccotiana tobacum: induction by thidiazuron of direct embryo differentiation from leaf discs. Plant Cell Rep 12:154–159

    Article  Google Scholar 

  • Giri CC, Shyamkumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees 18:115–135

    Article  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  PubMed  Google Scholar 

  • Han YJ, Kim YM, Lee JY, Kim SJ, Cho KC, Chandrasekhar T, Song PS, Woo YM, Kim JI (2009) Production of purple-colored creeping bentgrass using maize transcription factor genes Pl and Lc through Agrobacterium-mediated transformation. Plant Cell Rep 28:397–406

    Article  PubMed  Google Scholar 

  • Henny RJ, Chen J (2003) Foliage plant cultivar development. Plant Breeding Rev 23:245–290

    Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  CAS  PubMed  Google Scholar 

  • Huxley A (1992) The New Royal Horticultural Society Dictionary of Gardening. Stockton Press, New York, pp 294–305

    Google Scholar 

  • Jaiswal VS, Narayan P (1985) Regeneration of plantlets from the callus of stem segment of adult plants of Ficus religiosa L. Plant Cell Rep 4:256–258

    Article  CAS  Google Scholar 

  • Jona R, Gribaudo I (1987) Adventitious bud formation from leaf explants of F. lyrata. HortScience 22:651–653

    Google Scholar 

  • Kim KM, Kim MY, Yun PY, Chandrasekhar T, Lee HY, Song PS (2007) Production of multiple shoots and plant regeneration from leaf segments of fig tree (Ficus carica L.). J Plant Biol 50:440–446

    Article  CAS  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hiraoka H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:82

    Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Radha A, Kumar Chitta S (1998) In vitro plant regeneration of fig (Ficus carica L. cv. Gular) using apical buds from mature trees. Plant Cell Rep 17:717–720

    Article  CAS  Google Scholar 

  • Li SJ, Deng XM, Mao HZ, Hong Y (2005) Enhanced anthocyanin synthesis in foliage plant Caladium Bicolor. Plant Cell Rep 23:716–720

    Article  CAS  PubMed  Google Scholar 

  • Li ZT, Dhekney SA, Gray DJ (2011) Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco. Transgenic Res 20:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Li ZT, Kim KH, Jasinski JR, Creech MR, Gray DJ (2012) Large-scale characterization of promoters from grapevine (Vitis spp.) using quantitative anthocyanin and GUS assay systems. Plant Sci 196:132–142

    Article  CAS  PubMed  Google Scholar 

  • Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773–1775

    Article  CAS  PubMed  Google Scholar 

  • Mars M (2003) Fig (Ficus carica L.) genetic resources and breeding. Acta Hort 605:19–27

    Google Scholar 

  • Mok MC, Mok DWS, Turner JE, Mujer CV (1987) Biological and biochemical effects of cytokinin-active phenyl urea derivatives in tissue culture systems. HortScience 22:1194–1196

    CAS  Google Scholar 

  • Mooney M, Desnos T, Harrison K, Jones J, Carpenter R, Coen E (1995) Altered regulation of tomato and tobacco pigmentation genes caused by the delila gene of Antirrhinum. Plant J 7:333–339

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muriithi LM, Rangan TS, Waite BH (1982) In vitro propagation of fig through shoot tip culture. HortScience 17:86–87

    CAS  Google Scholar 

  • Neff MM, Chory J (1998) Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol 118:27–35

    Article  CAS  PubMed  Google Scholar 

  • Owino WO, Nakano R, Kubo Y, Inaba A (2004) Coordinated expression patterns of genes encoding cell wall modifying enzymes during ripening in distinct anatomical tissue regions of the fig (Ficus carica L.) fruit. Postharvest Biol Technol 32:253–261

    Article  CAS  Google Scholar 

  • Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229

    Article  CAS  PubMed  Google Scholar 

  • Pontikis CA, Melas P (1986) Micropropagation of Ficus carica L. HortScience 21:153

    Google Scholar 

  • Ray H, Yu M, Auser P, Blahut-Beatty L, McKersie B, Bowley S, Westcott N, Coulman B, Lloyd A, Gruber MY (2003) Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc. Plant Physiol 132:1448–1463

    Article  CAS  PubMed  Google Scholar 

  • Soliman HI, Gabr M, Abdallah N (2010) Efficient transformation and regeneration of fig (Ficus carica L.) via somatic embryogenesis. GM Crops 1:47–58

    Article  Google Scholar 

  • USDA (2012) Floriculture crops 2011 summary. USDA

  • Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, Vernhettes S (1998) Transgene-induced gene silencing in plants. Plant J 16:651–659

    Article  CAS  PubMed  Google Scholar 

  • Yakushiji H, Mase N, Sato Y (2003) Adventitious bud formation and plantlet regeneration from leaves of fig (Ficus carica L.). J Hort Sci Biotechnol 78:874–878

    CAS  Google Scholar 

  • Yancheva SD, Golubowicz S, Yablowicz Z, Perl A, Flaishman MA (2005) Efficient Agrobacterium-mediated transformation and recovery of transgenic fig (Ficus carica L.) plants. Plant Sci 168:1433–1441

    Article  CAS  Google Scholar 

  • Zhao J, Cui J, Liu J, Liao F, Henny RJ, Chen J (2012) Direct somatic embryogenesis from leaf and petiole explants of Spathiphyllum ‘Supreme’ and analysis of regenerants using flow cytometry. Plant Cell Tiss Org Cult 110:239–249

    Article  Google Scholar 

  • Zhao J, Li Z, Cui J, Henny RJ, Gray DJ, Xi J, Chen J (2013) Efficient somatic embryogenesis and Agrobacterium-mediated transformation of pothos (Epipremnum aureum) ‘Jade’. Plant Cell Tiss Org Cult 114:237–247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Oglesby Plant International, Inc. (Altha, FL, USA) for providing microshoots of Ficus lyrata and Terri Mellich for performing DNA flow cytometry analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Chen.

Additional information

Communicated by K. Kamo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Li, Z.T., Chen, J. et al. Purple-leaved Ficus lyrata plants produced by overexpressing a grapevine VvMybA1 gene. Plant Cell Rep 32, 1783–1793 (2013). https://doi.org/10.1007/s00299-013-1491-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1491-5

Keywords

Navigation