Skip to main content
Log in

Leucine biosynthesis is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The rice blast fungus Magnaporthe oryzae causes one of the most devastating crop diseases world-wide and new control strategies for blast disease are urgently required. We have used insertional mutagenesis in M. oryzae to define biological processes that are critical for blast disease. Here, we report the identification of LEU2A by T-DNA mutagenesis, which putatively encodes 3-isopropylmalate dehydrogenase (3-IPMDH) required for leucine biosynthesis, implicating that synthesis of this amino acid is required for fungal pathogenesis. M. oryzae contains a further predicted 3-IPMDH gene (LEU2B), two 2-isopropylmalate synthase (2-IPMS) genes (LEU4 and LEU9) and an isopropylmalate isomerase (IPMI) gene (LEU1). Targeted gene deletion mutants of LEU1, LEU2A or LEU4 are leucine auxotrophs, and severely defective in pathogenicity. All phenotypes associated with mutants lacking LEU1, LEU2A or LEU4 could be overcome by adding exogenous leucine. The expression levels of LEU1, LEU2A or LEU4 genes were significantly down-regulated by deletion of the transcription factor gene LEU3, an ortholog of Saccharomyces cerevisiae LEU3. We also functionally characterized leucine biosynthesis genes in the wheat pathogen Fusarium graminearum and found that FgLEU1, FgLEU3 and FgLEU4 are essential for wheat head blight disease, suggesting that leucine biosynthesis in filamentous fungal pathogens may be a conserved factor for fungal pathogenicity and, therefore, a potential target for disease control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Brisco PRG, Kohlhaw GB (1990) Regulation of yeast LEU2. Total deletion of regulatory gene LEU3 unmasks GCN4-dependent basal level expression of LEU2. J Biol Chem 265:11667–11675

    CAS  PubMed  Google Scholar 

  • Caracuel-Rios Z, Talbot NJ (2007) Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea. Curr Opin Microbiol 10:339–345

    CAS  PubMed  Google Scholar 

  • Carroll AM, Sweigard JA, Valent B (1994) Improved vectors for selecting resistance to hygromycin. Fungal Genet Newsl 41:22

    Google Scholar 

  • Casalone E, Barberio C, Cavalieri D, Polsinelli M (2000) Identification by functional analysis of the gene encoding alpha-isopropylmalate synthase II (LEU9) in Saccharomyces cerevisiae. Yeast 16:539–545

    CAS  PubMed  Google Scholar 

  • Chang LL, Cunningham TS, Gatzek PR, Chen W, Kohlhaw GB (1984) Cloning and characterization of yeast LEU4, one of two genes responsible for alpha-isopropylmalate synthase. Genetics 108:91–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zuo RF, Zhu Q, Sun Y, Li MY, Dong YH, Ru YY, Zhang HF, Zheng XB, Zhang ZG (2014) MoLys2 is necessary for growth, conidiogenesis, lysine biosynthesis, and pathogenicity in Magnaporthe oryzae. Fungal Genet Biol 67:51–57

    CAS  PubMed  Google Scholar 

  • Chipman D, Barak Z, Schloss JV (1998) Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385:401–419

    CAS  PubMed  Google Scholar 

  • Colón M, Hernández F, López K, Quezada H, González J, López G, Aranda C, González A (2011) Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme. PLoS One 6:e16099

    PubMed  PubMed Central  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    CAS  PubMed  Google Scholar 

  • Divon HH, Fluhr R (2007) Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiol Lett 266:65–74

    CAS  PubMed  Google Scholar 

  • Do E, Hu G, Caza M, Oliveira D, Kronstad JW, Jung WH (2015) Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans. Fungal Genet Biol 75:11–19

    CAS  PubMed  Google Scholar 

  • Downes DJ, Davis MA, Kreutzberger SD, Taig BL, Todd RB (2013) Regulation of the NADP-glutamate dehydrogenase gene gdhA in Aspergillus nidulans by the Zn(II)2Cys6 transcription factor LeuB. Microbiology 159:2467–2480

    CAS  PubMed  Google Scholar 

  • Drain P, Schimmel P (1988) Multiple new genes that determine activity for the first step of leucine biosynthesis in Saccharomyces cerevisiae. Genetics 119:13–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Zhang HF, Hong L, Wang JM, Zheng XB, Zhang ZG (2013) Acetolactate synthases MoIlv2 and MoIlv6 are required for infection-related morphogenesis in Magnaporthe oryzae. Mol Plant Pathol 14:870–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Hong L, Tang W, Li LW, Wang XL, Ma HY, Wang ZY, Zhang HF, Zheng XB, Zhang ZG (2014) Threonine deaminase MoIlv1 is important for conidiogenesis and pathogenesis in the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 73:53–60

    CAS  PubMed  Google Scholar 

  • Ebbole DJ (2007) Magnaporthe as a model for understanding host-pathogen interactions. Annu Rev Phytopathol 45:437–456

    CAS  PubMed  Google Scholar 

  • Fan GL, Zhang K, Huang H, Zhang H, Zhao A, Chen LB, Chen RQ, Li GP, Wang ZH, Lu GD (2017) Multiprotein-bridging factor 1 regulates vegetative growth, osmotic stress, and virulence in Magnaporthe oryzae. Curr Genet 63:293–309

    CAS  PubMed  Google Scholar 

  • Fernandez J, Yang KT, Cornwell KM, Wright JD, Wilson RA (2013) Growth in rice cells requires de novo purine biosynthesis by the blast fungus Magnaporthe oryzae. Sci Rep 3:2398

    PubMed  PubMed Central  Google Scholar 

  • Friden P, Schimmel P (1988) LEU3 of Saccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanucleotide core sequence. Mol Cell Biol 8:2690–2697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Chen Y, Du Y, Dong YH, Guo W, Zhai S, Zhang HF, Dong SM, Zhang ZG, Wang YC, Wang P, Zheng XB (2011) The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 7:e1001302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howard RJ, Valent B (1996) Breaking and entering host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50:491–512

    CAS  PubMed  Google Scholar 

  • Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284

    CAS  PubMed  Google Scholar 

  • Hsu YP, Schimmel P (1984) Yeast LEU1. Repression of mRNA levels by leucine and relationship of 5′-noncoding region to that of LEU2. J Biol Chem 259:3714–3719

    CAS  PubMed  Google Scholar 

  • Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N, Salam MU, Surovy MZ, Sancho VB, Maciel JL, NhaniJúnior A, Castroaqudín VL, Reqes JT, Ceresini PC, Ravel S, Kellner R, Fournier E, Tharreau D, Lebrun MH, McDonald BA, Stitt T, Swan D, Talbot NJ, Saunders DG, Win J, Kamoun S (2016) Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 14:84

    PubMed  PubMed Central  Google Scholar 

  • Jeon J, Goh J, Yoo S, Chi MH, Choi J, Rho HS, Park J, Han SS, Kim BR, Park SY, Kim S, Lee YH (2008) A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Mol Plant Microbe Interact 21:525–534

    CAS  PubMed  Google Scholar 

  • Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kershaw MJ, Talbot NJ (2009) Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci USA 106:15967–15972

    CAS  PubMed  Google Scholar 

  • Kim S, Park SY, Kim KS, Rho HS, Chi MH, Choi J, Park J, Kong S, Park J, Goh J, Lee YH (2009) Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genet 5:e1000757

    PubMed  PubMed Central  Google Scholar 

  • Kispal G, Steiner H, Court DA, Rolinski B, Lill R (1996) Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem 271:24458–24464

    CAS  PubMed  Google Scholar 

  • Kohlhaw GB (2003) Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 67:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong LA, Yang J, Li GT, Qi LL, Zhang YJ, Wang CF, Zhao WS, Xu JR, Peng YL (2012) Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8:e1002526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong LA, Li GT, Liu Y, Liu MG, Zhang SJ, Yang J, Zhou XY, Peng YL, Xu JR (2013) Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae. Fungal Genet Biol 56:33–41

    CAS  PubMed  Google Scholar 

  • Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    PubMed  Google Scholar 

  • Leung H, Borromeo ES, Bernardo MA, Notteghem JL (1988) Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea. Phytopathology 78:1227–1233

    Google Scholar 

  • Li Y, Liang S, Yan X, Wang H, Li DB, Soanes DM, Talbot NJ, Wang ZH, Wang ZY (2010) Characterization of MoLDB1 required for vegetative growth, infection-related morphogenesis, and pathogenicity in the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact 23:1260–1274

    CAS  PubMed  Google Scholar 

  • Li GT, Zhou XY, Xu JR (2012) Genetic control of infection-related development in Magnaporthe oryzae. Curr Opin Microbiol 15:678–684

    CAS  PubMed  Google Scholar 

  • Liu YG, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649–656

    CAS  PubMed  Google Scholar 

  • Liu WD, Xie SY, Zhao XH, Chen X, Zheng WH, Lu GD, Xu JR, Wang ZH (2010) A homeobox gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact 23:366–375

    CAS  PubMed  Google Scholar 

  • Liu X, Han Q, Wang J, Wang X, Xu JH, Shi JR (2016) Two FgLEU2 genes with different roles in leucine biosynthesis and infection-related morphogenesis in Fusarium graminearum. PLoS One 11:e0165927

    PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    CAS  Google Scholar 

  • López G, Quezada H, Duhne M, González J, Lezama M (2015) Diversification of paralogous α-isopropylmalate synthases by modulation of feedback control and hetero-oligomerization in Saccharomyces cerevisiae. Eukaryot Cell 14:564–577

    PubMed  PubMed Central  Google Scholar 

  • Matar KAO, Chen XF, Chen DJ, Anjago WM, Norvienyeku J, Lin YH, Chen ML, Wang ZH, Ebbole DJ, Lu GD (2017) WD40-repeat protein MoCreC is essential for carbon repression and is involved in conidiation, growth and pathogenicity of Magnaporthe oryzae. Curr Genet 63:685–696

    CAS  PubMed  Google Scholar 

  • McCourt JA, Duggleby RG (2006) Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31:173–210

    CAS  PubMed  Google Scholar 

  • Nishimura M, Fukada J, Moriwaki A, Fujikawa T, Ohashi M, Hibi T, Hayashi N (2009) Mstu1, an APSES transcription factor, is required for appressorium-mediated infection in Magnaporthe grisea. Biosci Biotechnol Biochem 73:1779–1786

    CAS  PubMed  Google Scholar 

  • Odenbach D, Breth B, Thines E, Weber RW, Anke H, Foster AJ (2007) The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol Microbiol 64:293–307

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sesma A, Osbourn AE (2004) The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431:582–586

    CAS  PubMed  Google Scholar 

  • Shi ZX, Christian D, Leung H (1998) Interactions between spore morphogenetic mutations affect cell types, sporulation, and pathogenesis in Magnaporthe grisea. Mol Plant Microbe Interact 11:199–207

    CAS  PubMed  Google Scholar 

  • Storms RK, Holowachuck EW, Friesen JD (1981) Genetic complementation of the Saccharomyces cerevisiae leu2 gene by the Escherichia coli leuB gene. Mol Cell Biol 1:836–842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot NJ (1995) Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends Microbiol 3:9–16

    CAS  PubMed  Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202

    CAS  PubMed  Google Scholar 

  • Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Jiang HL, Zheng QJ, Chen XH, Wang RF, Yang S, Zhao GY, Liu J, Norvienyeku J, Wang ZH (2019) Isopropylmalate isomerase MoLeu1 orchestrates leucine biosynthesis, fungal development, and pathogenicity in Magnaporthe oryzae. Appl Microbiol Biotechnol 103:327–337

    CAS  PubMed  Google Scholar 

  • Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–417

    CAS  PubMed  Google Scholar 

  • Wang ZY, Soanes DM, Kershaw MJ, Talbot NJ (2007) Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. Mol Plant Microbe Interact 20:475–491

    PubMed  Google Scholar 

  • Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7:185–195

    CAS  PubMed  Google Scholar 

  • Wilson RA, Fernandez J, Quispe CF, Gradnigo J, Seng A, Moriyama E, Wright JD (2012) Towards defining nutrient conditions encountered by the rice blast fungus during host infection. PLoS One 7:e47392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu JR, Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696–2706

    CAS  PubMed  Google Scholar 

  • Yan X, Li Y, Yue XF, Wang CC, Que YW, Kong DD, Ma ZH, Talbot NJ, Wang ZY (2011) Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 7:e1002385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X, Que YW, Wang H, Wang CC, Li Y, Yue XF, Ma ZH, Talbot NJ, Wang ZY (2013) The MET13 methylenetetrahydrofolate reductase gene is essential for infection-related morphogenesis in the rice blast fungus Magnaporthe oryzae. PLoS One 8:e76914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhao XY, Sun J, Kang ZS, Ding SL, Xu JR, Peng YL (2010) A novel protein Com1 is required for normal conidium morphology and full virulence in Magnaporthe oryzae. Mol Plant Microbe Interact 23:112–123

    CAS  PubMed  Google Scholar 

  • Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981

    CAS  PubMed  Google Scholar 

  • Yue XF, Que YW, Xu L, Deng SZ, Peng YL, Talbot NJ, Wang ZY (2016) ZNF1 encodes a putative C2H2 zinc-finger protein essential for appressorium differentiation by the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact 29:22–35

    CAS  PubMed  Google Scholar 

  • Zhang Y, Shi HB, Liang S, Ning GA, Xu NC, Lu JP, Liu XH, Lin FC (2015) MoARG1, MoARG5,6 and MoARG7 involved in arginine biosynthesis are essential for growth, conidiogenesis, sexual reproduction, and pathogenicity in Magnaporthe oryzae. Microbiol Res 180:11–22

    CAS  PubMed  Google Scholar 

  • Zhang N, Luo J, Rossman AY, Aoki T, Chuma I, Crous PW, Dean RA, de Vries RP, Donofrio N, Hyde KD, Lebrun MH, Talbot NJ, Tharreau D, Tosa Y, Valent B, Wang ZH, Xu JR (2016) Generic names in Magnaporthales. IMA Fungus 7:155–159

    PubMed  PubMed Central  Google Scholar 

  • Zhou ZZ, Li GH, Lin CH, He CZ (2009) Conidiophore stalk-less1 encodes a putative Zinc-Finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae. Mol Plant Microbe Interact 22:402–410

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant nos. 31570135 and 31770153) to ZW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: YQ, XY, NT and ZW. Performed the experiments: YQ, XY, NY, ZX, ST, CW, WL, LX and ZW. Analysed the data: YQ, XY, NT and ZW. Wrote the paper: YQ, NT and ZW.

Corresponding author

Correspondence to Zhengyi Wang.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1785 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Que, Y., Yue, X., Yang, N. et al. Leucine biosynthesis is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Curr Genet 66, 155–171 (2020). https://doi.org/10.1007/s00294-019-01009-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-01009-2

Keywords

Navigation