Skip to main content
Log in

Histone stress: an unexplored source of chromosomal instability in cancer?

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Ploidy is stably maintained in most human somatic cells by a sequential and tight coordination of cell cycle events. Undesired whole genome doublings or duplications are frequent in tumours and have been quite recently described as macro-evolutionary events associated with poor prognosis. In vitro and in vivo studies suggest that polyploidy can favour genome instability, facilitate the formation and progression of tumours, and modify their sensitivity to chemotherapeutic agents. Stress is strongly related to changes in ploidy and whole genome doublings. In this review, we summarize different mechanisms that promote polyploidization, describe a new type of stress able to trigger WGDs in S. cerevisiae, histone stress, and provide some examples and theoretical scenarios that support that cancer cells might suffer from this type of stress. We finally highlight some results showing that the kinase Swe1 (Wee1 in humans) has a role in sensing histone levels before cells enter mitosis, thereby avoiding their undesired consequences on chromosome segregation and ploidy control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Au WC, Crisp MJ, DeLuca SZ, Rando OJ, Basrai MA (2008) Altered dosage and mislocalization of histone H3 and Cse4p lead to chromosome loss in Saccharomyces cerevisiae. Genetics 179:263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielski CM, Zehir A, Penson AV, Donoghue MTA, Chatila W, Armenia J, Chang MT, Schram AM, Jonsson P, Bandlamudi C, Razavi P, Iyer G, Robson ME, Stadler ZK, Schultz N, Baselga J, Solit DB, Hyman DM, Berger MF, Taylor BS (2018) Genome doubling shapes the evolution and prognosis of advanced cancers. Nat Genet 50(8):1189–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botchkarev VV, Haber JE (2018) Functions and regulation of the Polo-like kinase Cdc5 in the absence and presence of DNA damage. Curr Genet 64:87

    Article  CAS  PubMed  Google Scholar 

  • Brocato J, Fang L, Chervona Y, Chen D, Kiok K, Sun H, Tseng HC, Xu D, Shamy M, Jin C, Costa M (2014) Arsenic induces polyadenylation of canonical histone mRNA by down-regulating stem-loop-binding protein gene expression. J Biol Chem 289(46):31751–31764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocato J, Chen D, Liu J, Fang L, Jin C, Costa M (2015) A potential new mechanism of arsenic carcinogenesis: depletion of stem-loop binding protein and increase in polyadenylated canonical histone H3.1 mRNA. Biol Trace Elem Res 166:72–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo AG, Mellone BG, Partridge JF, Richardson W, Hamilton GL, Allshire RC, Pidoux AL (2007) Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4. PLoS Genet 3:e121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers AL, Ormerod G, Durley SC, Sing TL, Brown GW, Kent NA, Downs JA (2012) The INO80 chromatin remodeling complex prevents polyploidy and maintains normal chromatin structure at centromeres. Genes Dev 26(23):2590–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chervona Y, Arita A, Costa M (2012) Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 4(7):619–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clément C, Orsi GA, Gatto A, Boyarchuk E, Forest A, Hajj B, Miné-Hattab J, Garnier M, Gurard-Levin ZA, Quivy JP, Almouzni G (2018) High-resolution visualization of H3 variants during replication reveals their controlled recycling. Nat Commun 9(1):3181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, Greenblatt JF, Krogan NJ (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137):806–810

    Article  CAS  PubMed  Google Scholar 

  • Cook AJ, Gurard-Levin ZA, Vassias L, Almouzni G (2011) A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3-H4 in the histone supply chain. Mol Cell 44:918–927

    Article  CAS  PubMed  Google Scholar 

  • D’Avino PP, Giansanti MG, Petronczki M (2015) Cytokinesis in animal cells. Cold Spring Harb Perspect Biol 7:a015834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davoli T, de Lange T (2011) The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 27:585–610

    Article  CAS  PubMed  Google Scholar 

  • Dewhurst SM, McGranahan N, Burrell RA, Rowan AJ, Gronroos E, Endesfelder D, Joshi T, Mouradov D, Gibbs P, Ward RL, Hawkins NJ, Szallasi Z, Sieber OM, Swanton C et al (2014) Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov 4:175–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duelli D, Lazebnik Y (2007) Cell-to-cell fusion as a link between viruses and cancer. Nat Rev Cancer 7:968–976

    Article  CAS  PubMed  Google Scholar 

  • Duronio RJ, Marzluff WF (2017) Coordinating cell cycle-regulated histone gene expression through assembly and function of the histone locus body. RNA Biol 14(6):726–738

    Article  PubMed  PubMed Central  Google Scholar 

  • Dürrbaum M, Storchová Z (2016) Effects of aneuploidy on gene expression: implications for cancer. FEBS J 283(5):791–802

    Article  CAS  PubMed  Google Scholar 

  • Eriksson PR, Ganguli D, Nagarajavel V, Clark DJ (2012) Regulation of histone gene expression in budding yeast. Genetics 191(1):7–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Ganem NJ, Storchova Z, Pellman D (2007) Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17:157–162

    Article  CAS  PubMed  Google Scholar 

  • Gao P, Zheng J (2011) Oncogenic virus-mediated cell fusion: new insights into initiation and progression of oncogenic viruses-related cancers. Cancer Lett 303:1–8

    Article  CAS  PubMed  Google Scholar 

  • Gentric G, Desdouets C (2014) Polyploidization in liver tissue. Am J Pathol 184:322–331

    Article  CAS  PubMed  Google Scholar 

  • Gentric G, Celton-Morizur S, Desdouets C (2015) Polyploidy and liver proliferation. Clin Res Hepatol Gastroenterol 36:29–34

    Article  CAS  Google Scholar 

  • Gokhman D, Livyatan I, Sailaja BS, Melcer S (2013) Meshorer E (2013) Multilayered chromatin analysis reveals E2f, Smad and Zfx as transcriptional regulators of histones. Nat Struct Mol Biol. 20(1):119–126

    Article  CAS  PubMed  Google Scholar 

  • Groth A, Ray-Gallet D, Quivy JP, Lukas J, Bartek J, Almouzni G (2005) Human Asf1 regulates the flow of S phase histones during replicational stress. Mol Cell 17:301–311

    Article  CAS  PubMed  Google Scholar 

  • Groth A, Rocha W, Verreault A, Almouzni G (2007) Chromatin challenges during DNA replication and repair. Cell 128(4):721–733

    Article  CAS  PubMed  Google Scholar 

  • Gunesdogan U, Jackle H, Herzig A (2014) Histone supply regulates S phase timing and cell cycle progression. Elife 3:e02443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunjan A, Verreault A (2003) A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115:537–549

    Article  CAS  PubMed  Google Scholar 

  • Harari Y, Ram Y, Rappoport N, Hadany L, Kupiec M (2018a) Spontaneous changes in ploidy are common in yeast. Curr Biol 28(6):825–835

    Article  CAS  PubMed  Google Scholar 

  • Harari Y, Ram Y, Kupiec M (2018b) Frequent ploidy changes in growing yeast cultures. Curr Genet 64(5):1001–1004

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Smith MM (2015) Histone variants and epigenetics. Cold Spring Harbor Perspect Biol 7(1):a019364

    Article  CAS  Google Scholar 

  • Howell AS, Lew DJ (2012) Morphogenesis and the cell cycle. Genetics 190:51–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson S, Chen ZJ (2010) Genomic and expression plasticity of polyploidy. Curr Opin Plant Biol 13(2):153–159

    Article  CAS  PubMed  Google Scholar 

  • Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S et al (2017) Tracking the evolution of non-small-cell lung cancer. N Engl J Med 376:2109–2121

    Article  CAS  Google Scholar 

  • Jang CW, Shibata Y, Starmer J, Yee D, Magnuson T (2015) Histone H3.3 maintains genome integrity during mammalian development. Genes Dev 29(13):1377–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan A, Zhang X, Li J, Laulicht-Glick F, Sun H, Costa M (2017) Nickel and cadmium-induced SLBP depletion: a potential pathway to metal mediated cellular transformation. PLoS One 12(3):e0173624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kari V, Karpiuk O, Tieg B, Kriegs M, Dikomey E, Krebber H, Begus-Nahrmann Y, Johnsen SA (2013) A subset of histone H2B genes produces polyadenylated mRNAs under a variety of cellular conditions. PLoS One 8(5):e63745. https://doi.org/10.1371/journal.pone.0063745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khare SP, Sharma A, Deodhar KK, Gupta S (2011) Overexpression of histone variant H2A.1 and cellular transformation are related in N-nitrosodiethylamine-induced sequential hepatocarcinogenesis. Exp Biol Med 236:30–35

    Article  CAS  Google Scholar 

  • Lacroix B, Maddox AS (2012) Cytokinesis, ploidy and aneuploidy. J Pathol 226:338–351

    Article  CAS  PubMed  Google Scholar 

  • Lanzotti DJ, Kaygun H, Yang X, Duronio RJ, Marzluff WF (2002) Developmental control of histone mRNA and dSLBP synthesis during Drosophila embryogenesis and the role of dSLBP in histone mRNA 3′ end processing in vivo. Mol Cell Biol 22(7):2267–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson LI, Bjerregaard B, Talts JF (2008) Cell fusions in mammals. Histochem Cell Biol 129:551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  CAS  PubMed  Google Scholar 

  • Lew DJ (2000) Cell-cycle checkpoints that ensure coordination between nuclear and cytoplasmic events in Saccharomyces cerevisiae. Curr Opin Genet Dev 10:47–53

    Article  CAS  PubMed  Google Scholar 

  • Mahajan K, Fang B, Koomen JM, Mahajan NP (2012) H2B Tyr37 phosphorylation suppresses expression of replication-dependent core histone genes. Nat Struct Mol Biol 19:930–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzluff WF, Gongidi P, Woods KR, Jin J, Maltais LJ (2002) The human and mouse replication-dependent histone genes. Genomics 80(5):487–498

    Article  CAS  PubMed  Google Scholar 

  • Marzluff WF, Wagner EJ, Duronio RJ (2008) Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9:843–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maya Miles D, Peñate Salas X, Sanmartín Olmo T, Jourquin F, de la Cruz Muñoz Centeno M, Mendoza M, Simon MN, Chávez S, Géli V (2018) High levels of histones promote whole-genome-duplications and trigger a Swe1WEE1 dependent phosphorylation of Cdc28CDK1. Elife 7:e35337

    Article  PubMed  PubMed Central  Google Scholar 

  • Maya D, Morillo-Huesca M, Delgado L, Chavez S, Munoz-Centeno MC (2013) A histone cycle. In: Stuart D (ed) The mechanisms of DNA replication. InTech, Rijeka

    Google Scholar 

  • Mei Q, Huang J, Chen W, Tang J, Xu C, Yu Q, Cheng Y, Ma L, Yu X, Li S (2017) Regulation of DNA replication-coupled histone gene expression. Oncotarget 8(55):95005–95022

    Article  PubMed  PubMed Central  Google Scholar 

  • Melters DP, Nye J, Zhao H, Dalal Y (2015) Chromatin dynamics in vivo: a game of musical chairs. Genes 6(3):751–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendiratta S, Gatto A, Almouzni G (2019) Histone supply: multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol 218(1):39–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miettinen TP, Pessa HK, Caldez MJ, Fuhrer T, Diril MK, Sauer U, Kaldis P, Björklund M (2014) Identification of transcriptional and metabolic programs related to mammalian cell size. Curr Biol CB 24(6):598–608

    Article  CAS  PubMed  Google Scholar 

  • Mullen TE, Marzluff WF (2008) Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev 22(1):50–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murillo-Pineda M, Cabello-Lobato MJ, Clemente-Ruiz M, Monje-Casas F, Prado F (2014) Defective histone supply causes condensin-dependent chromatin alterations, SAC activation and chromosome decatenation impairment. Nucleic Acids Res 42:12469–12482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr-Weaver TL (2015) When bigger is better: the role of polyploidy in organogenesis. Trends Genet 31:307–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    Article  CAS  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    Article  CAS  PubMed  Google Scholar 

  • Ovrebo JI, Edgar BA (2018) Polyploidy in tissue homeostasis and regeneration. Development 145(14):dev156034

    Article  CAS  PubMed  Google Scholar 

  • Palou R, Palou G, Quintana DG (2017) A role for the spindle assembly checkpoint in the DNA damage response. Curr Genet 63:275

    Article  CAS  PubMed  Google Scholar 

  • Pandit SK, Westendorp B, de Bruin A (2013) Physiological significance of polyploidization in mammalian cells. Trends Cell Biol 23:556–566

    Article  CAS  PubMed  Google Scholar 

  • Prado F, Maya D (2017) Regulation of replication fork advance and stability by nucleosome assembly. Genes 8(2):49

    Article  CAS  PubMed Central  Google Scholar 

  • Quénet D (2018) Histone variants and disease. Int Rev Cell Mol Biol 335:1–39

    Article  PubMed  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Rattray AM, Müller B (2012) The control of histone gene expression. Biochem Soc Trans 40(4):880–885. https://doi.org/10.1042/BST20120065

    Article  CAS  PubMed  Google Scholar 

  • Reverón-Gómez N, González-Aguilera C, Stewart-Morgan KR, Petryk N, Flury V, Graziano S, Johansen JV, Jakobsen JS, Alabert C, Groth A (2018) Accurate recycling of parental histones reproduces the histone modification landscape during DNA replication. Mol Cell 72(2):239.e5–249.e5

    Article  CAS  Google Scholar 

  • Riedmann C, Ma Y, Melikishvili M, Godfrey SG, Zhang Z, Chen KC, Rouchka EC, Fondufe-Mittendorf YN (2015) Inorganic Arsenic-induced cellular transformation is coupled with genome wide changes in chromatin structure, transcriptome and splicing patterns. BMC Genom 16(1):212

    Article  CAS  Google Scholar 

  • Salzler HR, Davidson JM, Montgomery ND, Duronio RJ (2009) Loss of the histone pre-mRNA processing factor stem-loop binding protein in Drosophila causes genomic instability and impaired cellular proliferation. PLoS One 4:e8168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santaguida S, Amon A (2015) Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol 16:473–485

    Article  CAS  PubMed  Google Scholar 

  • Santos GC, Zielenska M, Prasad M, Squire JA (2007) Chromosome 6p amplification and cancer progression. J Clin Pathol 60:1–7

    Article  CAS  PubMed  Google Scholar 

  • Schoenfelder KP, Fox DT (2015) The expanding implications of polyploidy. J Cell Biol 209:485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholes DR, Paige KN (2015) Plasticity in ploidy: a generalized response to stress. Trends Plant Sci 20(3):165–175

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Zeng JY, Zhuang CM, Zhou YQ, Yao HP, Hu X, Zhang R, Wang MH (2013) Small-molecule inhibitor BMS-777607 induces breast cancer cell polyploidy with increased resistance to cytotoxic chemotherapy agents. Mol Cancer Ther 12(5):725–736

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, King RW (2005) Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Skene PJ, Henikoff S (2013) Histone variants in pluripotency and disease. Development 140(12):2513–2524

    Article  CAS  PubMed  Google Scholar 

  • Sullivan E, Santiago C, Parker ED, Dominski Z, Yang X, Lanzotti DJ, Ingledue TC, Marzluff WF, Duronio RJ (2001) Drosophila stem loop binding protein coordinates accumulation of mature histone mRNA with cell cycle progression. Genes Dev 15(2):173–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama Y, Mamnun YM, Trickey M, Dhut S, Masuda F, Yamano H, Toda T, Saitoh S (2010) Hsk1- and SCF(Pof3)-dependent proteolysis of S. pombe Ams2 ensures histone homeostasis and centromere function. Dev Cell 18:385–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbert PB, Henikoff S (2014) Environmental responses mediated by histone variants. Trends Cell Biol 24(11):642–650

    Article  CAS  PubMed  Google Scholar 

  • Talbert PB, Henikoff S (2017) Histone variants on the move: substrates for chromatin dynamics. Nat Rev Mol Cell Biol 18(2):115–126

    Article  CAS  PubMed  Google Scholar 

  • Talbert PB, Ahmad K, Almouzni G, Ausió J, Berger F, Bhalla PL, Bonner WM, Cande WZ, Chadwick BP, Chan SW, Cross GA, Cui L, Dimitrov SI, Doenecke D, Eirin-López JM, Gorovsky MA, Hake SB, Hamkalo BA, Holec S, Jacobsen SE, Kamieniarz K, Khochbin S, Ladurner AG, Landsman D, Latham JA, Loppin B, Malik HS, Marzluff WF, Pehrson JR, Postberg J, Schneider R, Singh MB, Smith MM, Thompson E, Torres-Padilla ME, Tremethick DJ, Turner BM, Waterborg JH, Wollmann H, Yelagandula R, Zhu B, Henikoff S (2012) A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 21(5):7

    Article  CAS  Google Scholar 

  • Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H, Ochiai T, Yoda K, Nomura F (2003) Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res. 63(13):3511–3516

    CAS  PubMed  Google Scholar 

  • Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411–424

    Article  CAS  Google Scholar 

  • Wang T, Chuffart F, Bourova-Flin E, Wang J, Mi J, Rousseaux S, Khochbin S (2018) Histone variants: critical determinants in tumour heterogeneity. Front Med. https://doi.org/10.1007/s11684-018-0667-3

    Article  PubMed  Google Scholar 

  • Wertheim B, Beukeboom LW, van de Zande L (2013) Polyploidy in animals: effects of gene expression on sex determination, evolution and ecology. Cytogenet Genome Res 140:256–269

    Article  CAS  PubMed  Google Scholar 

  • Yant L, Bomblies K (2015) Genome management and mismanagement—cell-level opportunities and challenges of whole-genome duplication. Genes Dev 29(23):2405–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zack TL, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhsng CZ, Wala J, Mermel CH, Sougnez C, Gabriel SB, Hernandez B, Shen H, Laird PW, Getz G, Meyerson M, Beroukhim R (2013) Pan-cancer patterns of somatic copy number alteration. Nat Genet 45:1134–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Sebastian Chavez, Manuel Mendoza and Marie-Noelle Simon for discussions. Work in V.G. laboratory was supported by “Ligue contre le Cancer” (Equipe Labéllisée 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Géli.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miles, D.M., Desdouets, C. & Géli, V. Histone stress: an unexplored source of chromosomal instability in cancer?. Curr Genet 65, 1081–1088 (2019). https://doi.org/10.1007/s00294-019-00967-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-00967-x

Keywords

Navigation