Skip to main content

Advertisement

Log in

Interactions between RNA-binding proteins and P32 homologues in trypanosomes and human cells

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

RNA-binding proteins (RBPs) are involved in many aspects of mRNA metabolism such as splicing, nuclear export, translation, silencing, and decay. To cope with these tasks, these proteins use specialized domains such as the RNA recognition motif (RRM), the most abundant and widely spread RNA-binding domain. Although this domain was first described as a dedicated RNA-binding moiety, current evidence indicates these motifs can also engage in direct protein–protein interactions. Here, we discuss recent evidence describing the interaction between the RRM of the trypanosomatid RBP UBP1 and P22, the homolog of the human multifunctional protein P32/C1QBP. Human P32 was also identified while performing a similar interaction screening using both RRMs of TDP-43, an RBP involved in splicing regulation and Amyotrophic Lateral Sclerosis. Furthermore, we show that this interaction is mediated by RRM1. The relevance of this interaction is discussed in the context of recent TDP-43 interactomic approaches that identified P32, and the numerous evidences supporting interactions between P32 and RBPs. Finally, we discuss the vast universe of interactions involving P32, supporting its role as a molecular chaperone regulating the function of its ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afroz T, Cienikova Z, Clery A, Allain FH (2015) One, two, three, four! How multiple RRMs read the genome sequence. Methods Enzymol 558:235–278. doi:10.1016/bs.mie.2015.01.015

    Article  PubMed  Google Scholar 

  • Ayala YM, Pantano S, D’Ambrogio A, Buratti E, Brindisi A, Marchetti C, Romano M, Baralle FE (2005) Human, drosophila, and C. elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol 348:575–588. doi:10.1016/j.jmb.2005.02.038

    Article  CAS  PubMed  Google Scholar 

  • Ayala YM, Zago P, D’Ambrogio A, Xu YF, Petrucelli L, Buratti E, Baralle FE (2008) Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci 121:3778–3785. doi:10.1242/jcs.038950

    Article  CAS  PubMed  Google Scholar 

  • Batisse J, Batisse C, Budd A, Bottcher B, Hurt E (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284:34911–34917. doi:10.1074/jbc.M109.062034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beauparlant MA, Drouin G (2014) Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species. Curr Genet 60:17–24. doi:10.1007/s00294-013-0404-z

    Article  CAS  PubMed  Google Scholar 

  • Berro R, Kehn K, de la Fuente C, Pumfery A, Adair R, Wade J, Colberg-Poley AM, Hiscott J, Kashanchi F (2006) Acetylated Tat regulates human immunodeficiency virus type 1 splicing through its interaction with the splicing regulator p32. J Virol 80:3189–3204. doi:10.1128/JVI.80.7.3189-3204.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bialucha CU, Ferber EC, Pichaud F, Peak-Chew SY, Fujita Y (2007) p32 is a novel mammalian Lgl binding protein that enhances the activity of protein kinase Czeta and regulates cell polarity. J Cell Biol 178:575–581. doi:10.1083/jcb.200612022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brun R, Blum J, Chappuis F, Burri C (2010) Human African trypanosomiasis. Lancet 375:148–159. doi:10.1016/S0140-6736(09)60829-1

    Article  PubMed  Google Scholar 

  • Cassola A (2011) RNA granules living a post-transcriptional life: the trypanosomes’ case. Curr Chem Biol 5:108–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cassola A, Frasch AC (2009) An RNA recognition motif mediates the nucleocytoplasmic transport of a trypanosome RNA-binding protein. J Biol Chem 284:35015–35028. doi:10.1074/jbc.M109.031633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cassola A, De Gaudenzi JG, Frasch AC (2007) Recruitment of mRNAs to cytoplasmic ribonucleoprotein granules in trypanosomes. Mol Microbiol 65:655–670. doi:10.1111/j.1365-2958.2007.05833.x

    Article  CAS  PubMed  Google Scholar 

  • Cassola A, Noe G, Frasch AC (2010) RNA recognition motifs involved in nuclear import of RNA-binding proteins. RNA Biol 7:339–344

    Article  CAS  PubMed  Google Scholar 

  • Cassola A, Romaniuk MA, Primrose D, Cervini G, D’Orso I, Frasch AC (2015) Association of UBP1 to ribonucleoprotein complexes is regulated by interaction with the trypanosome ortholog of the human multifunctional P32 protein. Mol Microbiol. doi:10.1111/mmi.13090

    PubMed  Google Scholar 

  • Clayton C (2013) The regulation of trypanosome gene expression by RNA-binding proteins. PLoS Pathog 9:e1003680. doi:10.1371/journal.ppat.1003680

    Article  PubMed Central  PubMed  Google Scholar 

  • Clery A, Allain FH (2012) From structure to function of RNA binding domains. In: RNA binding proteins Chapter 9: 137–158

  • Clery A, Blatter M, Allain FH (2008) RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol 18:290–298. doi:10.1016/j.sbi.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  • Da Cruz S, Cleveland DW (2011) Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 21:904–919. doi:10.1016/j.conb.2011.05.029

    Article  PubMed Central  PubMed  Google Scholar 

  • Dammer EB, Fallini C, Gozal YM, Duong DM, Rossoll W, Xu P, Lah JJ, Levey AI, Peng J, Bassell GJ, Seyfried NT (2012) Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination. PLoS ONE 7:e38658. doi:10.1371/journal.pone.0038658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daniels JP, Gull K, Wickstead B (2010) Cell biology of the trypanosome genome. Microbiol Mol Biol Rev 74:552–569. doi:10.1128/MMBR.00024-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Gaudenzi JG, Noe G, Campo VA, Frasch AC, Cassola A (2011) Gene expression regulation in trypanosomatids. Essays Biochem 51:31–46. doi:10.1042/bse0510031

    Article  PubMed  Google Scholar 

  • Deb TB, Datta K (1996) Molecular cloning of human fibroblast hyaluronic acid-binding protein confirms its identity with P-32, a protein co-purified with splicing factor SF2. Hyaluronic acid-binding protein as P-32 protein, co-purified with splicing factor SF2. J Biol Chem 271:2206–2212

    Article  CAS  PubMed  Google Scholar 

  • Dedio J, Jahnen-Dechent W, Bachmann M, Muller-Esterl W (1998) The multiligand-binding protein gC1qR, putative C1q receptor, is a mitochondrial protein. J Immunol 160:3534–3542

    CAS  PubMed  Google Scholar 

  • Deo RC, Bonanno JB, Sonenberg N, Burley SK (1999) Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98:835–845

    Article  CAS  PubMed  Google Scholar 

  • D’Orso I, Frasch AC (2001) TcUBP-1, a developmentally regulated U-rich RNA-binding protein involved in selective mRNA destabilization in trypanosomes. J Biol Chem 276:34801–34809. doi:10.1074/jbc.M102120200

    Article  PubMed  Google Scholar 

  • Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev 3:195–205. doi:10.1038/nrm760

    Article  CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall N (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404–409. doi:10.1126/science.1112181

    Article  CAS  PubMed  Google Scholar 

  • Fialcowitz-White EJ, Brewer BY, Ballin JD, Willis CD, Toth EA, Wilson GM (2007) Specific protein domains mediate cooperative assembly of HuR oligomers on AU-rich mRNA-destabilizing sequences. J Biol Chem 282:20948–20959. doi:10.1074/jbc.M701751200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fogal V, Zhang L, Krajewski S, Ruoslahti E (2008) Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. Cancer Res 68:7210–7218. doi:10.1158/0008-5472.CAN-07-6752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fogal V, Richardson AD, Karmali PP, Scheffler IE, Smith JW, Ruoslahti E (2010) Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol Cell Biol 30:1303–1318. doi:10.1128/MCB.01101-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freibaum BD, Chitta RK, High AA, Taylor JP (2010) Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res 9:1104–1120. doi:10.1021/pr901076y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fribourg S, Gatfield D, Izaurralde E, Conti E (2003) A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat Struct Biol 10:433–439. doi:10.1038/nsb926

    Article  CAS  PubMed  Google Scholar 

  • Ghebrehiwet B, Lim BL, Peerschke EI, Willis AC, Reid KB (1994) Isolation, cDNA cloning, and overexpression of a 33-kD cell surface glycoprotein that binds to the globular “heads” of C1q. J Exp Med 179:1809–1821

    Article  CAS  PubMed  Google Scholar 

  • Ghebrehiwet B, Lim BL, Kumar R, Feng X, Peerschke EI (2001) gC1q-R/p33, a member of a new class of multifunctional and multicompartmental cellular proteins, is involved in inflammation and infection. Immunol Rev 180:65–77

    Article  CAS  PubMed  Google Scholar 

  • Ghebrehiwet B, Ji Y, Valentino A, Pednekar L, Ramadass M, Habiel D, Kew RR, Hosszu KH, Galanakis DK, Kishore U, Peerschke EI (2014) Soluble gC1qR is an autocrine signal that induces B1R expression on endothelial cells. J Immunol 192:377–384. doi:10.4049/jimmunol.1302031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayman ML, Miller MM, Chandler DM, Goulah CC, Read LK (2001) The trypanosome homolog of human p32 interacts with RBP16 and stimulates its gRNA binding activity. Nucleic Acids Res 29:5216–5225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heyd F, Carmo-Fonseca M, Moroy T (2008) Differential isoform expression and interaction with the P32 regulatory protein controls the subcellular localization of the splicing factor U2AF26. J Biol Chem 283:19636–19645. doi:10.1074/jbc.M801014200

    Article  CAS  PubMed  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183. doi:10.1038/415180a

    Article  CAS  PubMed  Google Scholar 

  • Horn D, McCulloch R (2010) Molecular mechanisms underlying the control of antigenic variation in African trypanosomes. Curr Opin Microbiol 13:700–705. doi:10.1016/j.mib.2010.08.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsieh CH, Huang SY, Wu YC, Liu LF, Han CC, Liu YC, Tam MF (2007) Expression of proteins with dimethylarginines in Escherichia coli for protein-protein interaction studies. Protein Sci 16:919–928. doi:10.1110/ps.062667407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K, Dong R, Guarani V, Vaites LP, Ordureau A, Rad R, Erickson BK, Wuhr M, Chick J, Zhai B, Kolippakkam D, Mintseris J, Obar RA, Harris T, Artavanis-Tsakonas S, Sowa ME, De Camilli P, Paulo JA, Harper JW, Gygi SP (2015) The bioplex network: a systematic exploration of the human interactome. Cell 162:425–440. doi:10.1016/j.cell.2015.06.043

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Zhang Y, Krainer AR, Xu RM (1999) Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein. Proc Natl Acad Sci USA 96:3572–3577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jourdain AA, Koppen M, Wydro M, Rodley CD, Lightowlers RN, Chrzanowska-Lightowlers ZM, Martinou JC (2013) GRSF1 regulates RNA processing in mitochondrial RNA granules. Cell Metab 17:399–410. doi:10.1016/j.cmet.2013.02.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kielkopf CL, Lucke S, Green MR (2004) U2AF homology motifs: protein recognition in the RRM world. Genes Dev 18:1513–1526. doi:10.1101/gad.1206204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knox C, Sass E, Neupert W, Pines O (1998) Import into mitochondria, folding and retrograde movement of fumarase in yeast. J Biol Chem 273:25587–25593

    Article  CAS  PubMed  Google Scholar 

  • Kolev NG, Ullu E, Tschudi C (2014) The emerging role of RNA-binding proteins in the life cycle of Trypanosoma brucei. Cell Microbiol 16:482–489. doi:10.1111/cmi.12268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krainer AR, Conway GC, Kozak D (1990) Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes Dev 4:1158–1171

    Article  CAS  PubMed  Google Scholar 

  • Krainer AR, Mayeda A, Kozak D, Binns G (1991) Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators. Cell 66:383–394

    Article  CAS  PubMed  Google Scholar 

  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643. doi:10.1038/nature04670

    Article  CAS  PubMed  Google Scholar 

  • Kumar GR, Shum L, Glaunsinger BA (2011) Importin alpha-mediated nuclear import of cytoplasmic poly(A) binding protein occurs as a direct consequence of cytoplasmic mRNA depletion. Mol Cell Biol 31:3113–3125. doi:10.1128/MCB.05402-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SR, Lykke-Andersen J (2013) Emerging roles for ribonucleoprotein modification and remodeling in controlling RNA fate. Trends Cell Biol 23:504–510. doi:10.1016/j.tcb.2013.05.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lehner B, Sanderson CM (2004) A protein interaction framework for human mRNA degradation. Genome Res 14:1315–1323. doi:10.1101/gr.2122004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Hawkins IC, Harvey CD, Jennings JL, Link AJ, Patton JG (2003) Regulation of alternative splicing by SRrp86 and its interacting proteins. Mol Cell Biol 23:7437–7447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Majumdar M, Meenakshi J, Goswami SK, Datta K (2002) Hyaluronan binding protein 1 (HABP1)/C1QBP/p32 is an endogenous substrate for MAP kinase and is translocated to the nucleus upon mitogenic stimulation. Biochem Biophys Res Commun 291:829–837. doi:10.1006/bbrc.2002.6491

    Article  CAS  PubMed  Google Scholar 

  • Maris C, Dominguez C, Allain FH (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. The FEBS J 272:2118–2131. doi:10.1111/j.1742-4658.2005.04653.x

    Article  CAS  PubMed  Google Scholar 

  • Matthews DA, Russell WC (1998) Adenovirus core protein V interacts with p32–a protein which is associated with both the mitochondria and the nucleus. J Gen Virol 79(Pt 7):1677–1685

    Article  CAS  PubMed  Google Scholar 

  • Michaeli S (2011) Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiol 6:459–474. doi:10.2217/fmb.11.20

    Article  CAS  PubMed  Google Scholar 

  • Miller MM, Read LK (2003) Trypanosoma brucei: functions of RBP16 cold shock and RGG domains in macromolecular interactions. Exp Parasitol 105:140–148. doi:10.1016/j.exppara.2003.12.002

    Article  CAS  PubMed  Google Scholar 

  • Muta T, Kang D, Kitajima S, Fujiwara T, Hamasaki N (1997) p32 protein, a splicing factor 2-associated protein, is localized in mitochondrial matrix and is functionally important in maintaining oxidative phosphorylation. J Biol Chem 272:24363–24370

    Article  CAS  PubMed  Google Scholar 

  • Noe G, De Gaudenzi JG, Frasch AC (2008) Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes. BMC Mol Biol 9:107. doi:10.1186/1471-2199-9-107

    Article  PubMed Central  PubMed  Google Scholar 

  • Ohrmalm C, Akusjarvi G (2006) Cellular splicing and transcription regulatory protein p32 represses adenovirus major late transcription and causes hyperphosphorylation of RNA polymerase II. J Virol 80:5010–5020. doi:10.1128/JVI.80.10.5010-5020.2006

    Article  PubMed Central  PubMed  Google Scholar 

  • Ouellette M, Papadopoulou B (2009) Coordinated gene expression by post-transcriptional regulons in African trypanosomes. J Biol 8:100. doi:10.1186/jbiol203

    Article  PubMed Central  PubMed  Google Scholar 

  • Peerschke EI, Ghebrehiwet B (2014) cC1qR/CR and gC1qR/p33: observations in cancer. Mol Immunol 61:100–109. doi:10.1016/j.molimm.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  • Petersen-Mahrt SK, Estmer C, Ohrmalm C, Matthews DA, Russell WC, Akusjarvi G (1999) The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J 18:1014–1024. doi:10.1093/emboj/18.4.1014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pu YG, Jiang YL, Ye XD, Ma XX, Guo PC, Lian FM, Teng YB, Chen Y, Zhou CZ (2011) Crystal structures and putative interface of Saccharomyces cerevisiae mitochondrial matrix proteins Mmf1 and Mam33. J Struct Biol 175:469–474. doi:10.1016/j.jsb.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  • Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375:1388–1402. doi:10.1016/S0140-6736(10)60061-X

    Article  PubMed  Google Scholar 

  • Schmidt O, Pfanner N, Meisinger C (2010) Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev 11:655–667. doi:10.1038/nrm2959

    Article  CAS  Google Scholar 

  • Schneider A, Bursac D, Lithgow T (2008) The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes. Trends Cell Biol 18:12–18. doi:10.1016/j.tcb.2007.09.009

    Article  CAS  PubMed  Google Scholar 

  • Soltys BJ, Kang D, Gupta RS (2000) Localization of P32 protein (gC1q-R) in mitochondria and at specific extramitochondrial locations in normal tissues. Histochem Cell Biol 114:245–255

    CAS  PubMed  Google Scholar 

  • Sprehe M, Fisk JC, McEvoy SM, Read LK, Schumacher MA (2010) Structure of the Trypanosoma brucei p22 protein, a cytochrome oxidase subunit II-specific RNA-editing accessory factor. J Biol Chem 285:18899–18908. doi:10.1074/jbc.M109.066597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Storz P, Hausser A, Link G, Dedio J, Ghebrehiwet B, Pfizenmaier K, Johannes FJ (2000) Protein kinase C [micro] is regulated by the multifunctional chaperon protein p32. J Biol Chem 275:24601–24607. doi:10.1074/jbc.M002964200

    Article  CAS  PubMed  Google Scholar 

  • Tange TO, Jensen TH, Kjems J (1996) In vitro interaction between human immunodeficiency virus type 1 Rev protein and splicing factor ASF/SF2-associated protein, p32. J Biol Chem 271:10066–10072

    Article  CAS  PubMed  Google Scholar 

  • Tenzer S, Moro A, Kuharev J, Francis AC, Vidalino L, Provenzani A, Macchi P (2013) Proteome-wide characterization of the RNA-binding protein RALY-interactome using the in vivo-biotinylation-pulldown-quant (iBioPQ) approach. J Proteome Res 12:2869–2884. doi:10.1021/pr400193j

    Article  CAS  PubMed  Google Scholar 

  • Tripsianes K, Friberg A, Barrandon C, Brooks M, van Tilbeurgh H, Seraphin B, Sattler M (2014) A novel protein-protein interaction in the RES (REtention and Splicing) complex. J Biol Chem 289:28640–28650. doi:10.1074/jbc.M114.592311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Leeuwen HC, O’Hare P (2001) Retargeting of the mitochondrial protein p32/gC1Qr to a cytoplasmic compartment and the cell surface. J Cell Sci 114:2115–2123

    PubMed  Google Scholar 

  • Varani L, Gunderson SI, Mattaj IW, Kay LE, Neuhaus D, Varani G (2000) The NMR structure of the 38 kDa U1A protein: PIE RNA complex reveals the basis of cooperativity in regulation of polyadenylation by human U1A protein. Nat Struct Biol 7:329–335. doi:10.1038/74101

    Article  CAS  PubMed  Google Scholar 

  • Vitali F, Henning A, Oberstrass FC, Hargous Y, Auweter SD, Erat M, Allain FH (2006) Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. EMBO J 25:150–162. doi:10.1038/sj.emboj.7600911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volpon L, D’Orso I, Young CR, Frasch AC, Gehring K (2005) NMR structural study of TcUBP1, a single RRM domain protein from Trypanosoma cruzi: contribution of a beta hairpin to RNA binding. Biochemistry 44:3708–3717. doi:10.1021/bi047450e

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang Y, Wu S, Pan S, Zhou C, Ma Y, Ru Y, Dong S, He B, Zhang C, Cao Y (2014) p32 is a novel target for viral protein ICP34.5 of herpes simplex virus type 1 and facilitates viral nuclear egress. J Biol Chem 289:35795–35805. doi:10.1074/jbc.M114.603845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu ZS (2012) Does a loss of TDP-43 function cause neurodegeneration? Mol Neurodegener 7:27. doi:10.1186/1750-1326-7-27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yagi M, Uchiumi T, Takazaki S, Okuno B, Nomura M, Yoshida S, Kanki T, Kang D (2012) p32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability. Nucleic Acids Res 40:9717–9737. doi:10.1093/nar/gks774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yogev O, Pines O (2011) Dual targeting of mitochondrial proteins: mechanism, regulation and function. Biochim Biophys Acta 1808:1012–1020. doi:10.1016/j.bbamem.2010.07.004

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa H, Komatsu W, Hayano T, Miura Y, Homma K, Izumikawa K, Ishikawa H, Miyazawa N, Tachikawa H, Yamauchi Y, Isobe T, Takahashi N (2011) Splicing factor 2-associated protein p32 participates in ribosome biogenesis by regulating the binding of Nop52 and fibrillarin to preribosome particles. Mol Cell Proteom 10(M110):006148. doi:10.1074/mcp.M110.006148

    Google Scholar 

  • Zhang X, Zhang F, Guo L, Wang Y, Zhang P, Wang R, Zhang N, Chen R (2013) Interactome analysis reveals that C1QBP (complement component 1, q subcomponent binding protein) is associated with cancer cell chemotaxis and metastasis. Mol Cell Proteom 12:3199–3209. doi:10.1074/mcp.M113.029413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to all the colleagues whose work could not be cited in this article due to space limitations. The work described here was performed with financial support from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) to AC. AC is a member of the Research Career of CONICET, and GC is a CONICET Research Fellow. The funders had no role in study design, data collection and analysis, and decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Cassola.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polledo, J.M., Cervini, G., Romaniuk, M.A. et al. Interactions between RNA-binding proteins and P32 homologues in trypanosomes and human cells. Curr Genet 62, 203–212 (2016). https://doi.org/10.1007/s00294-015-0519-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0519-5

Keywords

Navigation