Skip to main content
Log in

Isolation and functional analysis of the pathogenicity-related gene VdPR3 from Verticillium dahliae on cotton

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The fungal plant pathogen Verticillium dahliae is the causal agent of vascular wilt, a disease that can seriously diminish cotton fiber yield. The pathogenicity mechanism and the identity of the genes that interact with cotton during the infection process still remain unclear. In this study, we investigated the low-pathogenic, non-microsclerotium-producing mutant vdpr3 obtained in a previous study from the screening of a T-DNA insertional library of the highly virulent isolate Vd080; the pathogenicity-related gene (VdPR3) in wild-type strain Vd080 was cloned. Knockout mutants (ΔVdPR3) showed lower mycelium growth and obvious reduction in sporulation ability without microsclerotium formation. An evaluation of carbon utilization in mutants and wild-type isolate Vd080 demonstrated that mutants-lacking VdPR3 exhibited decreased cellulase and amylase activities, which was restored in the complementary mutants (ΔVdPR3-C) to levels similar to those of Vd080. ΔVdPR3 postponed infectious events in cotton and showed a significant reduction in pathogenicity. Reintroduction of a functional VdPR3 copy into ΔVdPR3-C restored the ability to infect cotton plants. These results suggest that VdPR3 is a multifunctional gene involved in growth development, extracellular enzyme activity, and virulence of V. dahliae on cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bourras S, Meyer M, Grandaubert J, Lapalu N, Fudal I, Linglin J (2012) Incidence of genome structure, DNA asymmetry, and cell physiology on T-DNA integration in chromosomes of the phytopathogenic fungus Leptosphaeria maculans. G3 Genes Genom Genet 2:891–904

    CAS  Google Scholar 

  • Clérivet A, Déon V, Alami I, Lopez F, Geiger JP (2000) Tyloses and gels associated with cellulose accumulation in vessels are responses of plane tree seedlings (Platanus × acerifolia) to the vascular fungus Ceratocystis fimbriata f. sp platani. Trees 15:25–31

    Article  Google Scholar 

  • Coley-Smith JR (1971) Survival and germination of fungal sclerotia. Annu Rev Phytopathol 9:65–92

    Article  Google Scholar 

  • Debode J, Maeyer KD, Perneel M, Pannecoucque J, Backer GD (2007) Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J Appl Microbiol 103:1184–1196

    Article  CAS  PubMed  Google Scholar 

  • Douaiher MN, Nowak E, Durand R, Halama P (2007) Correlative analysis of Mycosphaerella graminicola pathogenicity and cell wall-degrading enzymes produced in vitro: the importance of xylanase and polygalacturonase. Plant Pathol 56:79–86

    Article  CAS  Google Scholar 

  • Duressa D, Anchieta A, Chen D, Klimes A, Garcia-Pedrajas MD, Dobinson KF (2013) RNA-seq analyses of gene expression in the microsclerotia of Verticillium dahliae. BMC Genom 14:607

    Article  CAS  Google Scholar 

  • Ferrari S, Galletti R, Pontiggia D, Manfredini C, Lionetti V, Bellincampi D (2008) Transgenic expression of a fungal endo-polygalacturonase increases plant resistance to pathogens and reduces auxin sensitivity. Plant Physiol 146:669–681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fradin EF (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Zhou BJ, Li GY, Jia PS, Li H, Zhao YL (2010) A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity. PLoS One 5:e15319

    Article  PubMed Central  PubMed  Google Scholar 

  • Hawke MA (1994) Production and manipulation of individual microsclerotia of Verticillium dahliae for use in studies of survival. Phytopathology 84:883–890

    Article  Google Scholar 

  • Hennessy RC, Doohan F (2013) Generating phenotypic diversity in a fungal biocatalyst to investigate alcohol stress tolerance encountered during microbial cellulosic biofuel production. PLoS One 8:e77501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu D, Wang C, Tao F, Cui Q, Xu X, Shang W (2014) Whole genome wide expression profiles on germination of Verticillium dahliae microsclerotia. PLoS One 9:e100046

    Article  PubMed Central  PubMed  Google Scholar 

  • James C (2002) Global review of commercialized transgenic crops: 2001 feature: Bt cotton 26. ISAAA

  • Jeon J, Park SY, Chi MH, Choi J, Park J, Rho HS (2007) Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat Genet 39:561–565

    Article  CAS  PubMed  Google Scholar 

  • Khang CH, Park SY, Lee YH (2005) A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genet Biol 42:483–492

    Article  CAS  PubMed  Google Scholar 

  • Kikot GE, Hours RA (2009) Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review. J Basic Microb 49:231–241

    Article  CAS  Google Scholar 

  • Klimes A (2006) A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae. Fungal Genet Biol 43:283–294

    Article  CAS  PubMed  Google Scholar 

  • Klimes A, Amyotte SG, Grant S, Kang S (2008) Microsclerotia development in Verticillium dahliae: regulation and differential expression of the hydrophobin gene VDH1. Fungal Genet Biol 45:1525–1532

    Article  CAS  PubMed  Google Scholar 

  • Klosterman SJ, Atallah ZK, Vallad GE (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39–62

    Article  CAS  PubMed  Google Scholar 

  • Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BP (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 7:e1002137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levin AG (2003) Vegetative compatibility and pathogenicity of Verticillium dahliae Kleb. isolates from olive in Israel. J Phytopathol 151:451–455

    Article  Google Scholar 

  • Liu YG (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  CAS  PubMed  Google Scholar 

  • Liu SY, Chen JY, Wang JL, Li L, Xiao HL, Adam SM (2013) Molecular characterization and functional analysis of a specific secreted protein from highly virulent defoliating Verticillium dahliae. Gene 529:307–316

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Li ZF, Feng ZL, Zhao LH, Zhou FF, Shi YQ (2015) Phenotypic analysis of low pathogenic Verticillium dahliae mutants on cotton and cloning of pathogenicity related genes. Acta Phytopathol Sinica. doi:10.13926/j.cnki.apps.2015.02.014

    Google Scholar 

  • Maruthachalam K, Klosterman SJ, Kang S, Hayes RJ (2011) Identification of pathogenicity-related genes in the vascular wilt fungus Verticillium dahliae by Agrobacterium tumefaciens-mediated T-DNA insertional mutagenesis. Mol Biotechnol 49:209–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mullins ED (2001) Transformation: a tool for studying fungal pathogens of plants. Cell Mol Life S 58:2043–2052

    Article  CAS  Google Scholar 

  • Neumann MJ (2003) Sequence tag analysis of gene expression during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae. Fungal Genet Biol 38:54–62

    Article  CAS  PubMed  Google Scholar 

  • Pegg GF (2002) Verticillium wilts. CABI

  • Rauyaree P, Ospina-Giraldo MD, Kang S, Bhat RG, Subbarao KV, Grant SJ (2005) Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae. Curr Genet 48:109–116

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual (3-volume set), vol 999. Cold spring harbor laboratory press, New York

    Google Scholar 

  • Santhanam P, van Esse HP, Albert I, Faino L, Nürnberger T (2013) Evidence for functional diversification within a fungal NEP1-like protein family. Mol Plant Microbe Interact 26:278–286

    Article  CAS  PubMed  Google Scholar 

  • Schnathorst WC (1981) Life cycle and epidemiology of Verticillium. Fungal wilt Dis Plants: 81–111

  • Tzima AK, Paplomatas EJ, Rauyaree P (2010) Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae. Fungal Genet Biol 47:406–415

    Article  CAS  PubMed  Google Scholar 

  • Tzima AK, Paplomatas EJ, Rauyaree P, Ospina-Giraldo MD (2011) VdSNF1, the sucrose nonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression of genes involved in cell-wall degradation. Mol Plant Microbe Interact 24:129–142

    Article  CAS  PubMed  Google Scholar 

  • Tzima AK, Paplomatas EJ, Tsitsigiannis DI (2012) The G protein β subunit controls virulence and multiple growth-and development-related traits in Verticillium dahliae. Fungal Genet Biol 49:271–283

    Article  CAS  PubMed  Google Scholar 

  • Vallad GE (2008) Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein-tagged isolate of Verticillium dahliae. Phytopathology 98:871–885

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Cai Y, Gou JY, Mao YB, Xu YH, Jiang WH (2004) VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Appl Environ Microb 70:4989–4995

    Article  CAS  Google Scholar 

  • Xia ZJ, Achar PN (1998) Vegetative compatibility groupings of Verticillium dahliae from cotton in mainland China. Eur J Plant Pathol 104:871–876

    Article  Google Scholar 

  • Yadeta KA (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4

  • Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Liu H, Wang C (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genom 14:274

    Article  CAS  Google Scholar 

  • Zhou Z, Li G, Lin C (2009) Conidiophore stalk-less1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae. Mol Plant Microbe Interact 22:402–410

    Article  CAS  PubMed  Google Scholar 

  • Zhou BJ, Jia PS, Gao F (2012a) Molecular characterization and functional analysis of a necrosis-and ethylene-inducing, protein-encoding gene family from Verticillium dahliae. Mol Plant Microbe Interact 25:964–975

    Article  CAS  PubMed  Google Scholar 

  • Zhou FF, Li ZF, F ZL (2012b) Construction of T-DNA inserted transformation library of Verticillium dahliae on cotton and analysis of mutative traits. Acta Agriculturae Boreali-Occidentalis Sinica 08:19–25

    Google Scholar 

  • Zhu HQ, Feng ZL, Li ZF, Shi YQ, Zhao LH (2013) Characterization of two fungal isolates from cotton and evaluation of their potential for biocontrol of Verticillium wilt of cotton. J Phytopathol 161:70–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank National Science Foundation of China (No. 31201466) and the National High-tech R and D Program of China (863 Program) (No. 2013AA102601) for the financial support.

Conflict of interest

We declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Ping Hu or He-Qin Zhu.

Additional information

Communicated by Z. Zhang.

Ya-Lin Zhang and Zhi-Fang Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YL., Li, ZF., Feng, ZL. et al. Isolation and functional analysis of the pathogenicity-related gene VdPR3 from Verticillium dahliae on cotton. Curr Genet 61, 555–566 (2015). https://doi.org/10.1007/s00294-015-0476-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0476-z

Keywords

Navigation