Skip to main content
Log in

The heterogeneity of the rDNA-ITS sequence and its phylogeny in Rhizoctonia cerealis, the cause of sharp eyespot in wheat

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The sequence heterogeneity of the ribosomal internal transcribed spacer (ITS) region was investigated for Rhizoctonia cerealis isolates from the anastomosis group AG-DI. Although sequence variability of the ITS has been reported in a few multinucleate R. solani isolates, it has very rarely been reported in binucleate Rhizoctonia spp. isolates and has never been described in R. cerealis, the pathogen of wheat sharp eyespot. In this study, the ITS regions of 15 R. cerealis isolates were cloned and sequenced. The results revealed more than one different ITS sequence within each isolate. This is the first evidence of ITS sequence heterogeneity in R. cerealis. Based on these ITS sequences, different sequences of one isolate did not cluster in one clade, but all of the sequences of the 15 isolates were clustered in the anastomosis subgroup AG-DI, suggesting that the heterogeneity of the ITS did not affect the molecular identification of their anastomosis group. Haplotype analyses indicated that there might be three evolutionary origins of R. cerealis, or a recombination event could be the cause of different ITS sequences in one genome. This study demonstrates the variability and the evolution of Rhizoctonia, especially binucleate R. cerealis. These findings will help design disease control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aanen DK, Kuyper TW, Hoekstra RF (2001) A widely distributed ITS polymorphism within a biological species of the ectomycorrhizal fungus Hebeloma velutipes. Mycol Res 105:284–290

    Article  CAS  Google Scholar 

  • Ahvenniemi P, Wolf M, Lehtonen MJ, Wilson P, German-Kinnari M, Valkonen JP (2009) Evolutionary diversification indicated by compensatory base changes in ITS2 secondary structures in a complex fungal species, Rhizoctonia solani. J Mol Evol 69:150–163

    Article  CAS  PubMed  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Boysen M, Borja M, del Moral C, Salazar O, Rubio V (1996) Identification at strain level of Rhizoctonia solani AG4 strains by direct sequence of asymmetric PCR products of the ITS regions. Curr Genet 29:174–181

    Article  CAS  PubMed  Google Scholar 

  • Carling DE, Baird RE, Gitaitis RD, Brainard KA, Kuninaga S (2002) Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology 92:893–899

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Li W, Zhang XX, Zhang BQ, Yu HS, Chen HG (2009) Composition and virulence of pathogen of wheat sharp eyespot in north latitude 33 of China (in Chinese). J Triticeae Crops 29:1110–1114

    Google Scholar 

  • Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937

    Article  CAS  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  Google Scholar 

  • Dupuis JR, Roe AD, Sperling FAH (2012) Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Mol Ecol 21:4422–4436

    Article  PubMed  Google Scholar 

  • Feliner GN, Rossello JA (2007) Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol 44:911–919

    Article  Google Scholar 

  • Glass NL, Rasmussen C, Roca MG, Read ND (2004) Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol 12:135–141

    Article  CAS  PubMed  Google Scholar 

  • González García V, Portal Onco MA, Rubio Susan V (2006) Review: Biology and systematics of the form genus Rhizoctonia. Span J Agric Res 4:55–79

    Google Scholar 

  • Grosch R, Schneider JHM, Peth A, Waschke A, Franken P, Kofoet A, Jabaji-Hare SH (2007) Development of a specific PCR assay for the detection of Rhizoctonia solani AG 1-IB using SCAR primers. J Appl Microbiol 102:806–819

    Article  CAS  PubMed  Google Scholar 

  • Gunderson JH, Sogin ML, Wollett G, Hollingdale M, de la Cruz VF, Waters AP, McCutchan TF (1987) Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238:933–937

    Article  CAS  PubMed  Google Scholar 

  • Guo YP, Li W, Sun HY, Wang N, Yu HS, Chen HG (2012) Detection and quantification of Rhizoctonia cerealis in soil using Real-time PCR. J General Plant Pathol 78:247–254

    Article  CAS  Google Scholar 

  • Hamada MS, Yin Y, Chen HG, Ma Z (2011) The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot in wheat. Pest Manag Sci 67:1411–1419

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa T, Toda T, Ping Q, Mghalu JM, Yaguchi S, Hyakumachi M (2006) A new subgroup of Rhizoctonia AG-D, AG-D III, obtained from Japanese zoysia grass exhibiting symptoms of a new disease. Plant Dis 90:1389–1394

    Article  CAS  Google Scholar 

  • Hershkovitz MA, Lewis LA (1996) Deep-level diagnostic value of the rDNA-ITS region. Mol Biol Evol 13:1276–1295

    Article  CAS  PubMed  Google Scholar 

  • Hijri M, Hosny M, van Tuinen D, Dulieu H (1999) Intraspecific ITS polymorphism in Scutellospora castanea (Glomales, Zygomycota) is structured within multinucleate spores. Fungal Genet Biol 26:141–151

    Article  CAS  PubMed  Google Scholar 

  • Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453

    Article  CAS  PubMed  Google Scholar 

  • Hui JHL, Kortchagina N, Arendt D, Balavoine G, Ferrier DEK (2007) Duplication of the ribosomal gene cluster in the marine polychaete Platynereis dumerilii correlates with ITS polymorphism. J Mar Biol Assoc UK 87:443–449

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Banke S, McDonald BA, Frossard E (2002) Intra-and intersporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis. Mycol Res 106:670–681

    Article  CAS  Google Scholar 

  • Justesen AF, Yohalem D, Bay A, Nicolaisen M (2003) Genetic diversity in potato field populations of Thanatephorus cucumeris AG 3, revealed by ITS polymorphism and RAPD markers. Mycol Res 107:1323–1331

    Article  CAS  PubMed  Google Scholar 

  • Kiss L (2012) Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proc Natl Acad Sci USA 109:E1811

    Article  CAS  PubMed  Google Scholar 

  • Ko KS, Jung HS (2002) Three nonorthologous ITS1 types are present in a polypore fungus Trichaptum abietinum. Mol Phylogenet Evol 23:112–122

    Article  CAS  PubMed  Google Scholar 

  • Kronland WC, Stanghellini ME (1988) Clean slide technique for the observation of anastomosis and nuclear condition of Rhizoctonia solani. Phytopathology 78:820–822

    Article  Google Scholar 

  • Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745–748

    Article  CAS  PubMed  Google Scholar 

  • Kuninaga S, Yokosawa R (1985) DNA base sequence homology in Rhizoctonia solani Kühn. VI. Genetic relatedness among seven anastomosis groups. Ann Phytopathol Soc Jpn 51:127–132

    Article  Google Scholar 

  • Kuninaga S, Yokosawa R, Ogoshi A (1978) Anastomosis grouping of Rhizoctonia solani Kühn isolated from non-cultivated soils. Ann Phytopathol Soc Jpn 44:591–598

    Article  Google Scholar 

  • Kuninaga S, Natsuaki T, Takeuchi T, Yokosawa R (1997) Sequence variation of the rDNA ITS regions within and between anastomosis groups in Rhizoctonia solani. Curr Genet 32:237–243

    Article  CAS  PubMed  Google Scholar 

  • Li W, Ji YL, Yu HS, Wang ZW (2006) A new species of Epichloё symbiotic with Chinese grasses. Mycologia 98:560–570

    Article  CAS  PubMed  Google Scholar 

  • Lipps RE, Herr LJ (1982) Etiology of Rhizoctonia cerealis in sharp eyespot of wheat. Phytopathology 72:1574–1577

    Article  Google Scholar 

  • Liu ZH, Zhang X, Lu WZ (2000) Research advances in wheat sharp eyespot and further control strategies (in Chinese). Jiangsu J Agric Sci 16:185–190

    Google Scholar 

  • Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH (2008) Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform Online 4:93–201

    Google Scholar 

  • Okabe I, Matsumoto N (2003) Phylogenetic relationship of Sclerotium rolfsii (teleomorph Athelia rolfsii) and S. delphinii based on ITS sequences. Mycol Res 107:164–168

    Article  CAS  PubMed  Google Scholar 

  • Pannecoucque J, Höfte M (2009) Detection of rDNA ITS polymorphism in Rhizoctonia solani AG 2-1 isolates. Mycologia 101:26–33

    Article  CAS  PubMed  Google Scholar 

  • Sanders IR, Clapp JP, Wiemken A (1996) The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems-a key to understanding the ecology and functioning of the mycorrhizal symbiosis. New Phytol 133:123–134

    Article  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246

    Article  CAS  PubMed  Google Scholar 

  • Sharon M, Kuninaga S, Hyakumachi M, Sneh B (2006) The advancing identification and classification of Rhizoctonia spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience 47:299–316

    Article  CAS  Google Scholar 

  • Sharon M, Kuninaga S, Hyakumachi M, Naito S, Sneh B (2008) Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience 49:93–114

    Article  CAS  Google Scholar 

  • Strausbaugh CA, Eujayl IA, Panella LW, Hanson LE (2011) Virulence, distribution, and diversity of Rhizoctonia solani from sugar beet in Idaho and Oregon. Can J Plant Pathol 33:210–226

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony method. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toda T, Hyakumachi M, Suga H, Kageyama K, Tanaka A, Tani T (1999) Differentiation of Rhizoctonia AG-D isolates from turfgrass into subgroups I and II based on rDNA and RAPD analysis. Eur J Plant Pathol 105:835–846

    Article  CAS  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA for phylogenetics. In: Innis MA, Gelfland DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wiese MV (1987) Compendium of wheat diseases. American Phytopathological Society Press, St Paul

    Google Scholar 

  • Xie J, Fu Y, Jiang D, Li G, Huang J, Li B, Hsiang T, Peng Y (2008) Intergeneric transfer of ribosomal genes between two fungi. BMC Evol Biol 8:72–87

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. JF Yu (College of Plant Protection, Shandong Agricultural University, China), Prof. SY Zhou (College of Agronomy and Plant Protection, Qingdao Agricultural University, China) and Prof. EX Zhou (Department of Plant Pathology, South China Agricultural University, China) for providing some standard isolates of Rhizoctonia. This work was supported by the National Science Foundation of China (Grant 30900928) and the fund earmarked for the China Agricultural Research System (CARS-3-1-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaigu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Sun, H., Deng, Y. et al. The heterogeneity of the rDNA-ITS sequence and its phylogeny in Rhizoctonia cerealis, the cause of sharp eyespot in wheat. Curr Genet 60, 1–9 (2014). https://doi.org/10.1007/s00294-013-0397-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-013-0397-7

Keywords

Navigation