Skip to main content
Log in

Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The target of rapamycin (TOR) signaling pathway is an essential regulator of cell growth in eukaryotic cells. In Saccharomyces cerevisiae, TOR controls the expression of many genes involved in a wide array of distinct nutrient-responsive metabolic pathways. By exploring the TOR pathway under different growth conditions, we have identified novel TOR-regulated genes, including genes required for branched-chain amino acid biosynthesis as well as lysine biosynthesis (LYS genes). We show that TOR-dependent control of LYS gene expression occurs independently from previously identified LYS gene regulators and is instead coupled to cAMP-regulated protein kinase A (PKA). Additional genome-wide expression analyses reveal that TOR and PKA coregulate LYS gene expression in a pattern that is remarkably similar to genes within the ribosomal protein and “Ribi” regulon genes required for ribosome biogenesis. Moreover, this pattern of coregulation is distinct from other clusters of TOR/PKA coregulated genes, which includes genes involved in fermentation as well as aerobic respiration, suggesting that control of gene expression by TOR and PKA involves multiple modes of crosstalk. Our results underscore how multiple signaling pathways, general growth conditions, as well as the availability of specific nutrients contribute to the maintenance of appropriate patterns of gene activity in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bernstein BE, Liu CL, Humphrey EL, Perlstein EO, Schreiber SL (2004) Global nucleosome occupancy in yeast. Genome Biol 5:R62

    Article  PubMed  Google Scholar 

  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  PubMed  CAS  Google Scholar 

  • Breitling R, Sharif O, Hartman ML, Krisans SK (2002) Loss of compartmentalization causes misregulation of lysine biosynthesis in peroxisome-deficient yeast cells. Eukaryot Cell 1:978–86

    Article  PubMed  CAS  Google Scholar 

  • Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15

    Article  PubMed  CAS  Google Scholar 

  • Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13:3271–3279

    Article  PubMed  CAS  Google Scholar 

  • Crauwels M, Donaton MC, Pernambuco MB, Winderickx J, de Winde JH, Thevelein JM (1997) The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiology 143(Pt 8):2627–2637

    PubMed  CAS  Google Scholar 

  • Crespo JL, Hall MN (2003) Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev 66:579–591

    Article  CAS  Google Scholar 

  • Damelin M, Simon I, Moy TI, Wilson B, Komili S, Tempst P, Roth FP, Young RA, Cairns BR, Silver PA (2002) The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol Cell 9:563–573

    Article  PubMed  CAS  Google Scholar 

  • Deminoff SJ, Santangelo GM (2001) Rap1p requires Gcr1p and Gcr2p homodimers to activate ribosomal protein and glycolytic genes, respectively. Genetics 158:133–143

    PubMed  CAS  Google Scholar 

  • DeRisi JL, Vishwanath IR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  PubMed  CAS  Google Scholar 

  • Di Como CJ, Arndt KT (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10:1904–1916

    Article  PubMed  CAS  Google Scholar 

  • Dilova I, Aronova S, Chen C-Y, Powers T (2004) Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1p/Rtg3p-dependent genes. J Biol Chem 279:46527–46535

    Article  PubMed  CAS  Google Scholar 

  • Dilova I, Chen C-Y, Powers T (2002) Mks1 in concert with TOR signaling negatively regulates RTG target gene expression in S. cerevisiae. Curr Biol 12:389–395

    Article  PubMed  CAS  Google Scholar 

  • Düvel K, Santhanam A, Garrett S, Schneper L, Broach JR (2003) Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol Cell 11:1467–1478

    Article  PubMed  Google Scholar 

  • Eden A, Simchen G, Benvenisty N (1996) Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem 271:20242–20245

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    Article  PubMed  CAS  Google Scholar 

  • Feller A, Dubois E, Ramos F, Pierard A (1994) Repression of the genes for lysine biosynthesis in Saccharomyces cerevisiae is caused by limitation of Lys14-dependent transcriptional activation. Mol Cell Biol 14:6411–64118

    PubMed  CAS  Google Scholar 

  • Feller A, Ramos F, Pierard A, Dubois E (1999) In Saccharomyces cerevisae, feedback inhibition of homocitrate synthase isoenzymes by lysine modulates the activation of LYS gene expression by Lys14p. Eur J Biochem 261:163–170

    Article  PubMed  CAS  Google Scholar 

  • Feller A, Ramos F, Pierard A, Dubois E (1997) Lys80p of Saccharomyces cerevisiae, previously proposed to as a specific repressor of Lys genes, is a pleiotropic regulatory factor identical to Mks1p. Yeast 13:1337–1346

    Article  PubMed  CAS  Google Scholar 

  • Fingerman I, Nagaraj V, Norris D, Vershon AK (2003) Sfp1 plays a key role in yeast ribosome biogenesis. Eukaryot Cell 2:1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    PubMed  CAS  Google Scholar 

  • Gelling CL, Piper MD, Hong SP, Kornfeld GD, Dawes IW (2004) Identification of a novel one-carbon metabolism regulon in Saccharomyces cerevisiae. J Biol Chem 279:7072–7081

    Article  PubMed  CAS  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    PubMed  CAS  Google Scholar 

  • Gorner W, Durchschlag E, Wolf J, Brown EL, Ammerer G, Ruis H, Schuller C (2002) Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. Embo J 21:135–144

    Article  PubMed  CAS  Google Scholar 

  • Grundy WN, Bailey TL, Elkan CP (1996) ParaMEME: a parallel implementation and a web interface for a DNA and protein motif discovery tool. Comput Appl Biosci 12:303–310

    PubMed  CAS  Google Scholar 

  • Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA 96:14866–14870

    Article  PubMed  CAS  Google Scholar 

  • Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1:22–32

    Article  PubMed  CAS  Google Scholar 

  • Holland MJ, Yokoi T, Holland JP, Myambo K, Innis MA (1987) The GCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraldehyde-3-phosphate dehydrogenase gene families in Saccharomyces cerevisiae. Mol Cell Biol 7:813–820

    PubMed  CAS  Google Scholar 

  • Hughes JD, Estep PW, Tavazoie S, Church GM (2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296:1205–1214

    Article  PubMed  CAS  Google Scholar 

  • Humphrey EL, Shamji AF, Bernstein BE, Schreiber SL (2004) Rpd3p relocation mediates a transcriptional response to rapamycin in yeast. Chem Biol 11:295–299

    Article  PubMed  CAS  Google Scholar 

  • Jacinto E, Guo B, Arndt KT, Schmelzle T, Hall MN (2001) TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol Cell 8:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Broach JR (1999) Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J 18:2782–2792

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Petty J, Hoyle DC, Hayes A, Ragni E, Popolo L, Oliver SG, Stateva LI (2003) Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway. Physiol Genomics 16:107–118

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M (2004) A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18:2491–2505

    Article  PubMed  CAS  Google Scholar 

  • Klein C, Struhl K (1994) Protein kinase A mediates growth-regulated expression of yeast ribosomal protein genes by modulating RAP1 transcriptional activity. Mol Cell Biol 14:1920–1928

    PubMed  CAS  Google Scholar 

  • Komeili A, Wedaman KP, O’Shea EO, Powers T (2000) Mechanism of metabolic control: Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J Cell Biol 151:863–878

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418:344–348

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Sekito T, S’pirek M, Thornton J, Butow RA (2003) Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p. Mol Cell 12:410–411

    Google Scholar 

  • Longtine MS, McKenzie III A, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961

    Article  PubMed  CAS  Google Scholar 

  • Marion RM, Regev A, Segal E, Barash Y, Koller D, Friedman N, O’Shea EK (2004) Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci U S A 101:14315–14322

    Article  PubMed  CAS  Google Scholar 

  • Martin DE, Hall MN (2005) The expanding TOR signaling network. Curr Opin Cell Biol 17:158–166

    Article  PubMed  CAS  Google Scholar 

  • Martin DE, Soulard A, and Hall MN (2004) TOR regulates ribosomal gene expression via PKA and the forkhead transcription factor FHL1. Cell

  • Nasmyth K, Adolf G, Lydall D, Seddon A (1990) The identiciation of a second cell cycle control on the HO promoter in yeast: Cell cycle regulation of SW15 nuclear entry. Cell 62:631–647

    Article  PubMed  CAS  Google Scholar 

  • Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368

    Article  PubMed  CAS  Google Scholar 

  • Neuman-Silverberg FS, Bhattacharya S, Broach JR (1995) Nutrient availability and the RAS/Cyclic AMP pathway both induce expression of ribosomal protein genes in Saccharomyces cerevisiae but by different mechanisms. Mol Cell Biol 15:3187–3196

    Google Scholar 

  • Pedruzzi I, Dubouloz F, Cameroni E, Wanke V, Roosen J, Winderickx J, De Virgilio C (2003) TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol Cell 12:1607–1613

    Article  PubMed  CAS  Google Scholar 

  • Powers T, Walter P (1999) Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10:987–1000

    PubMed  CAS  Google Scholar 

  • Rohde JR, Cardenas ME (2004) Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi. Curr Top Microbiol Immunol 279:53–72

    PubMed  CAS  Google Scholar 

  • Rohde JR, Cardenas ME (2003) The tor pathway regulates gene expression by linking nutrient sensing to histone acetylation. Mol Cell Biol 23:629–635

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201

    PubMed  CAS  Google Scholar 

  • Roosen J, Engelen K, Marchal K, Mathys J, Griffioen G, Cameroni E, Thevelein JM, De Virgilio C, De Moor B, Winderickx J (2005) PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 55:862–880

    Article  PubMed  CAS  Google Scholar 

  • Rudra D, Zhao Y, Warner JR (2005) Central role of Ifh1p-Fhl1p interaction in the synthesis of yeast ribosomal proteins. Embo J 24:533–542

    Article  PubMed  CAS  Google Scholar 

  • Schawalder SB, Kabani M, Howald I, Choudhury U, Werner M, Shore D (2004) Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature 432:1058–1061

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle T, Beck T, Martin DE, Hall MN (2004) Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol Cell Biol 24:338–351

    Article  PubMed  CAS  Google Scholar 

  • Schuller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer BE, Piper PW, Kuchler K (2004) Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15:706–720

    Article  PubMed  CAS  Google Scholar 

  • Shamji AF, Kuruvilla FG, Schreiber SL (2000) Partitioning the transcriptional program induced by rapmycin among the effectors of the Tor proteins. Curr Biol 10:1574–1581

    Article  PubMed  CAS  Google Scholar 

  • Shamji AF, Nghiem P, Schreiber SL (2003) Integration of growth factor and nutrient signaling: implications for cancer biology. Mol Cell 12:271–280

    Article  PubMed  CAS  Google Scholar 

  • Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–21

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Ward MP, Garrett S (1998) Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. Embo J 17:3556–3564

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    Article  PubMed  CAS  Google Scholar 

  • Tornow J, Zeng X, Gao W, Santangelo GM (1993) GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain. Embo J 12:2431–2437

    PubMed  CAS  Google Scholar 

  • Tsang CK, Bertram PG, Ai W, Drenan R, Zheng XF (2003) Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR. Embo J 22:6045–6056

    Article  PubMed  CAS  Google Scholar 

  • Wade C, Shea KA, Jensen RV, McAlear MA (2001) EBP2 is a member of the yeast RRB regulon, a transcriptionally coregulated set of genes that are required for ribosome and rRNA biosynthesis. Mol Cell Biol 21:8638–8650

    Article  PubMed  CAS  Google Scholar 

  • Wade JT, Hall DB, Struhl K (2004) The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature 432:1054–1058

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Pierce M, Schneper L, Guldal CG, Zhang X, Tavazoie S, Broach JR (2004) Ras and gpa2 mediate one branch of a redundant glucose signaling pathway in yeast. PLoS Biol 2:E128

    Article  PubMed  Google Scholar 

  • Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440

    Article  PubMed  CAS  Google Scholar 

  • Wilson WA, Roach PJ (2002) Nutrient-regulated protein kinases in budding yeast. Cell 111:155–158

    Article  PubMed  CAS  Google Scholar 

  • Zurita-Martinez SA, Cardenas ME (2005) Tor and cyclic AMP-protein kinase A: two parallel pathways regulating expression of genes required for cell growth. Eukaryot Cell 4:63–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Botstein, J. Broach, M. Hall, S. Garrett, and Gustav Ammerer for strains and L. Bisson, R. Butow, J. Derisi, M. Hall, K. Kaplan, and J. Nunnari for helpful discussions. This work was supported by grant MCB-1031221 from the National Sciences Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted Powers.

Additional information

Communicated by S. Hohmann

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J.CY., Powers, T. Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae . Curr Genet 49, 281–293 (2006). https://doi.org/10.1007/s00294-005-0055-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0055-9

Keywords

Navigation