Skip to main content
Log in

The G protein β subunit FGB1 regulates development and pathogenicity in Fusarium oxysporum

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract.

The cloning of fgb1, the gene encoding a heterotrimeric G protein β subunit FGB1 in Fusarium oxysporum, was performed by standard PCR techniques to evaluate the role of G protein signaling in this fungus. The full-length open reading frame spanned 1,077 nucleotides and the deduced primary structure of the protein (359 amino acid residues) showed high identity with Gβ subunits from other organisms. Disruption of fgb1 led to decreased intracellular cAMP levels, reduced pathogenicity, and alterations in physiological characteristics, including heat resistance, colony morphology, conidia formation and germination frequency. We previously showed that most of these alterations (except germination frequency) were also observed in the disruptants of fga1, the gene for Gα subunit FGA1 in F. oxysporum. These results suggest that FGA1 and FGB1 have partially overlapping functions in the regulation of development and pathogenicity in F. oxysporum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–c.
Fig. 3a–c.
Fig. 4a, b.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Alspaugh JA, Perfect JR, Heitman J (1997) Cryptococcus neoformans mating and virulence are regulated by the G-protein α subunit GPA1 and cAMP. Genes Dev 11:3206–3217

    CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Childers SR, Deadwyler SA (1996) Role of cyclic AMP in the actions of cannabinoid receptors. Biochem Pharmacol 52:819–827

    PubMed  Google Scholar 

  • Clapham DE, Neer EJ (1993) New roles for G-protein βγ dimers in transmembrane signaling. Nature 365:403–406

    CAS  PubMed  Google Scholar 

  • D'Souza CA, Heitman J (2001) Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25:349–364

    Article  CAS  PubMed  Google Scholar 

  • Fong HKW, Amatruda TT 3rd, Birren BW, Simon MI (1987) Distinct forms of the β subunit of GTP-binding regulatory proteins identified by molecular cloning. Proc Natl Acad Sci USA 84:3792–3796

    CAS  PubMed  Google Scholar 

  • Gao S, Nuss DL (1996) Distinct roles for two G protein α subunits in fungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proc Natl Acad Sci USA 93:14122–14127

    PubMed  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    CAS  PubMed  Google Scholar 

  • Gronover CS, Kasulke D, Tudzynski P, Tudzynski B (2001) The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol Plant-Microbe Interact 14:1293–302

    CAS  PubMed  Google Scholar 

  • Hamm HE, Gilchrist A (1996) Heterotrimeric G proteins. Curr Opin Cell Biol 8:189–196

    Article  CAS  PubMed  Google Scholar 

  • Harashima T, Heitman J (2002) The Gα protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gβ subunits. Mol Cell 10:163–173

    CAS  PubMed  Google Scholar 

  • Horwitz BA, Sharon A, Lu S-W, Ritter V, Sandrock TM, Yoder OC, Turgeon BG (1999) A G protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Fungal Genet Biol 26:19–32

    PubMed  Google Scholar 

  • Ivey FD, Hodge PN, Turner GE, Borkovich KA (1996) The Gαi homologue gna-1 controls multiple differentiation pathways in Neurospora crassa. Mol Biol Cell 7:1283–1297

    PubMed  Google Scholar 

  • Ivey FD, Yang Q, Borkovich KA (1999) Positive regulation of adenylyl cyclase activity by a Gαi homolog in Neurospora crassa. Fungal Genet Biol 26:48–61

    PubMed  Google Scholar 

  • Jain S, Akiyama K, Mae K, Ohguchi T, Takata R (2002) Targeted disruption of a G protein α subunit gene results in reduced pathogenicity in Fusarium oxysporum. Curr Genet 41:407–413

    CAS  PubMed  Google Scholar 

  • Kasahara S, Nuss DL (1997) Targeted disruption of a fungal G protein β subunit gene results in increased vegetative growth but reduced virulence. Mol Plant-Microbe Interact 10:984–993

    CAS  Google Scholar 

  • Kistler HC, Benny UK (1988) Genetic transformation of the fungal plant pathogen, Fusarium oxysporum. Curr Genet 13:145–149

    CAS  Google Scholar 

  • Landry S, Hoffman CS (2001) The git5 Gβ and git11 Gγ form an atypical Gβγ dimmer acting in the fission yeast glucose/cAMP pathway. Genetics 157:1159–1168

    CAS  PubMed  Google Scholar 

  • Leberer E, Thomas D, Whiteway M (1997) Pheromone signaling and polarized morphogenesis in yeast. Curr Opin Genet Dev 7:59–66

    CAS  PubMed  Google Scholar 

  • Lengeler KB, Davidson RC, D'Souza C, Harashima T, Shen W-C, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    CAS  PubMed  Google Scholar 

  • Lilly P, Wu L, Welker DL, Devreotes PN (1993) A G-protein β-subunit is essential for Dictyostelium development. Genes Dev 7:986–995

    CAS  PubMed  Google Scholar 

  • Liu S, Dean RA (1997) G protein α subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant-Microbe Interact 10:1075–1086

    CAS  Google Scholar 

  • Lorenz MC, Heitman J (1997) Yeast pseudohyphal growth is regulated by GPA2, a G protein α homolog. EMBO J 16:7008–7018

    Article  CAS  PubMed  Google Scholar 

  • Neer EJ, Schmidt CJ, Nanbudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300

    CAS  PubMed  Google Scholar 

  • Pan X, Heitman J (1999) Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19:4874–4887

    Google Scholar 

  • Regenfelder E, Spellig T, Hartmann A, Lauenstein S, Bölker M, Kahmann R (1997) G proteins in Ustilago maydis: transmission of multiple signals? EMBO J 16:1934–1942

    CAS  PubMed  Google Scholar 

  • Rodríguez-Gálvez E, Mendgen K (1995) The infection process of Fusarium oxysporum in cotton root tips. Protoplasma 189:61–72

    Google Scholar 

  • Rosén S, Yu JH, Adams TH (1999) The Aspergillus nidulans sfdD gene encodes a G protein β subunit that is required for normal growth and repression of sporulation. EMBO J 18:5592–5600

    Article  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Shiotani H, Tsuge T (1995) Efficient gene targeting in the filamentous fungus Alternaria alternata. Mol Gen Genet 248:142–150

    Google Scholar 

  • Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB (1996) Crystal structure of a GA protein βγ dimer at 2.1 Å resolution. Nature 379:369–374

    CAS  PubMed  Google Scholar 

  • Tang W-J, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254:1500–1503

    CAS  PubMed  Google Scholar 

  • To-Anun C, Nelson H, Ouchi S (1995) Electrophoretic karyotyping of Fusarium oxysporum. Ann Phytopathol Soc Jpn 61:350–356

    CAS  Google Scholar 

  • Truesdell GM, Yang Z, Dickman MB (2000) A Gα subunit gene from phytopathogenic fungus Colletotrichum trifolii is required for conidial germination. Physiol Mol Plant Pathol 56:131–140

    Article  Google Scholar 

  • Turgeon BG, Garber RC, Yoder OC (1987) Development of a fungal transformation system based on selection of sequences with promoter activity. Mol Cell Biol 7:3297–3305

    CAS  PubMed  Google Scholar 

  • Turner GE, Borkovich KA (1993) Identification of a G protein α subunit from Neurospora crassa that is a member of the Gi family. J Biol Chem 268:14805–14811

    PubMed  Google Scholar 

  • Wang P, Perfect JR, Heitman J (2000) The G-protein β subunit is required for mating and haploid fruiting in Cryptococcus neoformans. Mol Cell Biol 20:252–362

    Google Scholar 

  • Wellman FL (1939) A technique for studying host resistance and pathogenicity in tomato Fusarium wilt. Phytopathology 29:945–946

    Google Scholar 

  • Whiteway M, Hougan L, Dignard D, Thomas DY, Bell L, Saari GC, Grant FJ, O'Hara P, Mackay VL (1989) The STE4 and STE18 genes of yeast encode potential beta and gamma subunits of the mating factor receptor-coupled G protein. Cell 56:467–77

    CAS  PubMed  Google Scholar 

  • Yu J-H, Wieser J, Adams TH (1996) The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J 15:5184–5190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renkichi Takata.

Additional information

Communicated by J. Heitman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S., Akiyama, K., Kan, T. et al. The G protein β subunit FGB1 regulates development and pathogenicity in Fusarium oxysporum . Curr Genet 43, 79–86 (2003). https://doi.org/10.1007/s00294-003-0372-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0372-9

Keywords.

Navigation