Skip to main content
Log in

Antibacterial UV-photocured acrylic coatings containing quaternary ammonium salt

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study aimed to develop UV-curable coating materials showing antimicrobial properties. GTAC was acrylated and characterized by FT-IR and 1H NMR spectroscopy. UV-curable coating materials with different contents were prepared. Inhibition zone method was used to determine the antimicrobial activity of the materials. Thermal stability of samples was evaluated by TGA. Contact angles of samples were measured to obtain information about their hydrophobicity. Surface morphology of samples was investigated by SEM. Produced UV-curable coating materials have good antimicrobial, thermal and surface properties, and they can be used as antibacterial top coating material in many industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Edge M, Allen NS, Turner D, Robinson J, Seal K (2001) The enhanced performance of biocidal additives in paints and coatings. Prog Org Coat 43:10–17. https://doi.org/10.1016/S0300-9440(01)00244-2

    Article  CAS  Google Scholar 

  2. Ahonen M, Kahru A, Ivask A, Kasemets K, Kõljalg S, Mantecca P, Vinković Vrček I, Keinänen-Toivola MM, Crijns F (2017) Proactive approach for safe use of antimicrobial coatings in healthcare settings: opinion of the COST action network AMiCI. Int J Environ Res Public Health 14:366–388. https://doi.org/10.3390/ijerph14040366

    Article  CAS  PubMed Central  Google Scholar 

  3. Adlhart C, Verran J, Azevedo NF, Olmez H, Keinänen-Toivola MM, Gouveia I, Melo LF, Crijns F (2018) Surface modifications for antimicrobial effects in the healthcare setting: a critical overview. J Hosp Infect 99:239–249. https://doi.org/10.1016/j.jhin.2018.01.018

    Article  CAS  PubMed  Google Scholar 

  4. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 60:69–72. https://doi.org/10.1088/0957-4484/16/10/059

    Article  CAS  Google Scholar 

  5. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Leong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101. https://doi.org/10.1016/j.nano.2006.12.001

    Article  CAS  Google Scholar 

  6. Rai M, Yadav A, Gade A (2008) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  7. Wernicki A, Puchalski A, Urban-Chmiel R, Dec M, Stęgierska D, Dudzic A, Wójcik A (2014) Antimicrobial properties of gold, silver, copper and platinum nanoparticles against selected microorganisms isolated from cases of mastitis in cattle. Med Weter 70:564–567

    Google Scholar 

  8. Ocakoĝlu M, Şen F, Kahraman MV (2017) Synthesis of B/P/N containing flame-retardant additives and UV curable hybrid coating applications. Adv Polym Technol 36:517–524. https://doi.org/10.1002/adv.21638

    Article  CAS  Google Scholar 

  9. Jeong KM, Park SS, Nagappan S, Min G, Zhang Y, Qu M, Zhang Y, Ha CS (2019) Highly transparent, organic-inorganic hybrid UV-curable coating materials with amphiphobic characteristics. Prog Org Coat 134:323–332. https://doi.org/10.1016/j.porgcoat.2019.05.029

    Article  CAS  Google Scholar 

  10. Choi WC, Lee WK, Ha CS (2019) Low-viscosity UV-curable polyurethane acrylates containing dendritic acrylates for coating metal sheets. Coat Technol Res 16:377–385. https://doi.org/10.1007/s11998-018-0117-9

    Article  CAS  Google Scholar 

  11. Banerjee SL, Potluri P, Singha NK (2019) Antimicrobial cotton fibre coated with UV cured colloidal natural rubber latex: a sustainable material. Colloid Surface A 566:176–187. https://doi.org/10.1016/j.colsurfa.2019.01.018

    Article  CAS  Google Scholar 

  12. Rashid AKA, Younas R, Chong R (2016) A chemical reduction approach to the synthesis of copper nanoparticles. Int Nano Lett 6:21–26. https://doi.org/10.1007/s40089-015-0163-6

    Article  CAS  Google Scholar 

  13. Toker RD, Kayaman-Apohan N, Kahraman MV (2013) UV curable nano-silver containing polyurethane based organic-inorganic hybrid coatings. Prog Org Coat 76:1243–1250. https://doi.org/10.1016/j.porgcoat.2013.03.023

    Article  CAS  Google Scholar 

  14. Bayramoglu G, Kahraman MV, Kayaman-Apohan N, Güngor A (2006) Synthesis and characterization of uv-curable dual hybrid oligomers based on epoxy acrylate containing pendant alkoxysilane groups. Prog Org Coat 57:50–55. https://doi.org/10.1016/j.porgcoat.2006.06.002

    Article  CAS  Google Scholar 

  15. Şen F, Uzunsoy İ, Baştürk E, Kahraman MV (2017) Antimicrobial agent-free hybrid cationic starch/sodium alginate polyelectrolyte films for food packaging materials. Carbohydr Polym 170:264–270. https://doi.org/10.1016/j.carbpol.2017.04.079

    Article  CAS  PubMed  Google Scholar 

  16. Gao Q, Li H, Zeng X (2011) Preparation and characterization of UV-curable hyperbranched polyurethane acrylate. J Coat Technol Res 8:61–66. https://doi.org/10.1007/s11998-010-9285-y

    Article  CAS  Google Scholar 

  17. Ramos-Lara F, Lira A, Ramirez M, Flores M, Arroyo R, Caldiño U (2006) Optical spectroscopy of Nd3+ ions in poly(acrylic acid). J Phys Condens Matter 18:7951–7959. https://doi.org/10.1088/0953-8984/18/34/008

    Article  CAS  Google Scholar 

  18. Goldberg S, Doyle R, Rosenberg M (1990) Mechanism of enhancement of microbial cell hydrophobicity by cationic polymers. J Bacteriol 172:5650–5654. https://doi.org/10.1128/jb.172.10.5650-5654.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384. https://doi.org/10.1038/nrmicro3028

    Article  CAS  PubMed  Google Scholar 

  20. Madakbaş S, Şen F, Kahraman MV, Dumludağ F (2014) Preparation, characterization, thermal, and dielectric properties of polypyrrole/h-BN nanocomposites. Adv Polym Technol 34:21438. https://doi.org/10.1002/adv.21438

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Marmara University, Commission of Scientific Research Project under the project FEN-B-170118-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Memet Vezir Kahraman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birtane, H., Şen, F., Bozdağ, B. et al. Antibacterial UV-photocured acrylic coatings containing quaternary ammonium salt. Polym. Bull. 78, 3577–3588 (2021). https://doi.org/10.1007/s00289-020-03287-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03287-0

Keywords

Navigation