Skip to main content
Log in

Preparation of pH-sensitive amphiphilic block star polymers, their self-assembling characteristics and release behavior on encapsulated molecules

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(ethylene glycol) (PEG), a polymer with excellent biocompatibility, was widely used to form nanoparticles for drug delivery applications. In this paper, based on PEG, a series of pH-sensitive amphiphilic block star polymers of poly(ethylene glycol)-block-poly(ethoxy ethyl glycidyl ether) (PEG-b-PEEGE) with different hydrophobic length were synthesized by living anionic ring-opening polymerization method. The products were characterized using 1H NMR and gel permeation chromatography. These copolymers could self-assemble in aqueous solution to form micellar structure with controlled morphologies. Transmission electron microscopy showed that the nanoparticles are spherical or rodlike with different hydrophilic mass fractions. The pH response of polymeric aggregates from PEG-b-PEEGE was detected by fluorescence probe technique at different pH. A pH-dependent release behavior was observed and pH-responsiveness of PEG-b-PEEGE was affected by the hydrophobic block length. These results demonstrated that star-shaped polymers (PEG-b-PEEGE) are attractive candidates as anticancer drug delivery carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu W, Yao W, Wang X, Xie C, Zhang J, Jiang X (2015) Bioreducible heparin-based nanogel drug delivery system. Biomaterials 39:260–268

    Article  CAS  Google Scholar 

  2. Kumari P, Ghosh B, Biswas S (2016) Nanocarriers for cancer-targeted drug delivery. J Drug Target 24:179–191

    Article  CAS  Google Scholar 

  3. Fang Z, Wan LY, Chu LY, Zhang YQ, Wu JF (2015) ‘Smart’ nanoparticles as drug delivery systems for applications in tumor therapy. Expert Opin Drug Del 12:1943–1953

    Article  CAS  Google Scholar 

  4. Tyrrell ZL, Shen YQ, Radosz M (2010) Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog Polym Sci 35:1128–1143

    Article  CAS  Google Scholar 

  5. Gothwal A, Khan I, Gupta U (2016) Polymeric micelles: recent advancements in the delivery of anticancer drugs. Pharm Res 33:18–39

    Article  CAS  Google Scholar 

  6. Song ZM, Zhu WX, Yang FY, Liu N, Feng RL (2015) Preparation, characterization, in vitro release, and pharmacokinetic studies of curcumin-loaded mPEG-PVL nanoparticles. Polym Bull 72:75–91

    Article  CAS  Google Scholar 

  7. Gao HF, Matyjaszewski K (2008) Synthesis of low-polydispersity m iktoarm star copolymers via a simple “Arm-First” method: macromonomers as arm precursors. Macromolecules 41:4250–4257

    Article  CAS  Google Scholar 

  8. Buwalda SJ, Dijkstra PJ, Calucci L, Forte C, Feijen J (2010) Influence of amide versus ester linkages on the properties of eight-armed PEG-PLA star block copolymer hydrogels. Biomacromolecules 11:224–232

    Article  CAS  Google Scholar 

  9. Wu W, Wang WG, Li JS (2015) Star polymers: advances in biomedical applications. Prog Polym Sci 46:55–85

    Article  CAS  Google Scholar 

  10. Li WL, Zhang WJ, Yang XY, Xie ZG, Jing XB (2014) Biodegradable polymersomes from four-arm PEG-b-PDLLA for encapsulating hemoglobin. J Appl Polym Sci 131:40433

    Google Scholar 

  11. Zhang SD, Sun HJ, Hughes AD, Draghici B, Lejnieks J, Leowanawat P, Bertin A, De Leon LO, Kulikov OV, Chen YC, Pochan DJ, Heiney PA, Percec V (2014) “Single-single” amphiphilic janus dendrimers self-assemble into uniform dendrimersomes with predictable Size. ACS Nano 8:1554–1565

    Article  CAS  Google Scholar 

  12. Cai SS, Vijayan K, Cheng D, Lima EM, Discher DE (2007) Micelles of different morphologies—advantages of worm-like filomicelles of PEO-PCL in paclitaxel delivery. Pharm Res 24:2099–2109

    Article  CAS  Google Scholar 

  13. Taghizadeh B, Taranejoo S, Monemian SA, Moghaddam ZS, Daliri K, Derakhshankhah H, Derakhshani Z (2015) Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Deliv 22:145–155

    Article  CAS  Google Scholar 

  14. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  Google Scholar 

  15. Cheng R, Meng FH, Deng C, Klok HA, Zhong ZY (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657

    Article  CAS  Google Scholar 

  16. Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z (2016) Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85:152–167

    Article  CAS  Google Scholar 

  17. Du JZ, Du XJ, Mao CQ, Wang J (2011) Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133:17560–17563

    Article  CAS  Google Scholar 

  18. Wu YL, Chen W, Meng FH, Wang ZJ, Cheng R, Deng C, Liu HY, Zhong ZY (2012) Core-crosslinked pH-sensitive degradable micelles: a promising approach to resolve the extracellular stability versus intracellular drug release dilemma. J Control Release 164:338–345

    Article  CAS  Google Scholar 

  19. Feng X, Taton D, Ibarboure E, Chaikof EL, Gnanou Y (2008) Janus-type dendrimer-like poly(ethylene oxide)s. J Am Chem Soc 130:11662–11676

    Article  CAS  Google Scholar 

  20. Jiang S, Yao Y, Nie YZ, Yang JJ, Yang J (2011) Investigation of pH-responsive properties of polymeric micelles with a core-forming block having pendant cyclic ketal groups. J Colloid Interf Sci 364:264–271

    Article  CAS  Google Scholar 

  21. Discher DE, Ahmed F (2006) Polymersomes. Annu Rev Biomed Eng 8:323–341

    Article  CAS  Google Scholar 

  22. Percec V, Wilson DA, Leowanawat P, Wilson CJ, Hughes AD, Kaucher MS, Hammer DA, Levine DH, Kim AJ, Bates FS, Davis KP, Lodge TP, Klein ML, DeVane RH, Aqad E, Rosen BM, Argintaru AO, Sienkowska MJ, Rissanen K, Nummelin S, Ropponen J (2010) Self-assembly of janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328:1009–1014

    Article  CAS  Google Scholar 

  23. Shao S, Si J, Tang J, Sui M, Shen Y (2014) Jellyfish-shaped amphiphilic dendrimers: synthesis and formation of extremely uniform aggregates. Macromolecules 47:916–921

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21174001) and the “211 Project” of Anhui University (No. J01001319). The authors acknowledge the support from “Institute of High Performance Rubber Materials & Products” (Hefei) and “Collaborative Innovation Center for Petrochemical New Materials (Anqing)”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Cao or Xiaoshuang Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Cao, M., Chen, P. et al. Preparation of pH-sensitive amphiphilic block star polymers, their self-assembling characteristics and release behavior on encapsulated molecules. Polym. Bull. 74, 183–194 (2017). https://doi.org/10.1007/s00289-016-1707-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1707-2

Keywords

Navigation