Skip to main content

Advertisement

Log in

Genome-Wide Identification and Analysis of Chromosomally Integrated Putative Prophages Associated with Clinical Klebsiella pneumoniae Strains

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae, an opportunistic pathogen found in the environment and human mucosal surfaces, is a leading cause of nosocomial infections. K. pneumoniae is now considered a global threat owing to the emergence of multidrug-resistant strains making its infections untreatable. In this study, 254 strains of K. pneumoniae were screened for the presence of prophages using the PHASTER tool. Very few strains lacked prophages (3.1%), while the remaining harboured both intact (811) and defective prophages (709). A subset of 42 unique strains of K. pneumoniae was chosen for further analysis. Our analysis revealed the presence of 110 complete prophages which were further classified as belonging to Myoviridae (67.3%), Siphoviridae (28.2%) and Podoviridae family (4.5%). An alignment of the 110 complete, prophage genome sequences clustered the prophages into 16 groups and 3 singletons. While none of the prophages encoded for virulence factors, 2 (1.8%) prophages were seen to encode for the antibiotic resistance-related genes. The CRISPR-Cas system was prevalent in 10 (23.8%) out of the 42 strains. Further analysis of the CRISPR spacers revealed 11.42% of the total spacers integrated in K. pneumoniae chromosome to match prophage protein sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. https://doi.org/10.1155/2016/2475067

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vading M, Nauclér P, Kalin M, Giske CG (2018) Invasive infection caused by Klebsiella pneumoniae is a disease affecting patients with high co-morbidity and associated with high long-term mortality. PLoS ONE 13(4):e0195258

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Deleo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD, Porter AR, Chavda KD, Jacobs MR, Mathema B, Olsen RJ, Bonomo RA, Musser JM, Kreiswirth BN (2014) Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci USA 111:4988–4993

    CAS  PubMed  Google Scholar 

  4. Shen J, Zhou J, Xu Y, Xiu Z (2019) Prophages contribute to genome plasticity of Klebsiella pneumoniae and may involve the chromosomal integration of ARGs in CG258. Genomics. https://doi.org/10.1016/j.ygeno.2019.06.016

    Article  PubMed  PubMed Central  Google Scholar 

  5. De Sousa AL, Maués D, Lobato A, Franco EF, Pinheiro K, Araújo F, da PantojaSilva YALDC, Morais J, Ramos R (2018) PhageWeb—web interface for rapid identification and characterization of prophages in bacterial genomes. Front Genet 9:644

    PubMed  PubMed Central  Google Scholar 

  6. Fortier LC, Sekulovic O (2013) Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4:354–365

    PubMed  PubMed Central  Google Scholar 

  7. Brueggemann AB, Harrold CL, Rezaei Javan R, van Tonder AJ, McDonnell AJ, Edwards BA (2017) Pneumococcal prophages are diverse, but not without structure or history. Sci Rep 7:42976

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Srividhya KV, Alaguraj V, Poornima G, Kumar D, Singh GP, Raghavenderan L, Katta AV, Mehta P, Krishnaswamy S (2007) Identification of prophages in bacterial genomes by dinucleotide relative abundance difference. PLoS ONE 21:e1193

    Google Scholar 

  9. Alexeeva S, Guerra Martínez JA, Spus M, Smid EJ (2018) Spontaneously induced prophages are abundant in a naturally evolved bacterial starter culture and deliver competitive advantage to the host. BMC Microbiol 18:120

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramisetty BCM, Sudhakari PA (2019) Bacterial “grounded” prophages: hotspots for genetic renovation and innovation. Front Genet 12(10):65

    Google Scholar 

  11. Costa AR, Monteiro R, Azeredo J (2018) Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests profound impact on bacterial virulence and fitness. Sci Rep 8:15346

    PubMed  PubMed Central  Google Scholar 

  12. Roszniowski B, McClean S, Drulis-Kawa Z (2018) Burkholderia cenocepacia prophages-prevalence, chromosome location and major genes involved. Viruses 10:297

    PubMed Central  Google Scholar 

  13. Vale FF, Nunes A, Oleastro M, Gomes JP, Sampaio DA, Rocha R, Vítor JM, Engstrand L, Pascoe B, Berthenet E, Sheppard SK, Hitchings MD, Mégraud F, Vadivelu J, Lehours P (2017) Genomic structure and insertion sites of Helicobacter pylori prophages from various geographical origins. Sci Rep 7:42471

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan X, Xie L, Li W, Xie J (2014) Prophage-like elements present in Mycobacterium genomes. BMC Genom 15(1):243

    Google Scholar 

  15. Fu T, Fan X, Long Q, Deng W, Song J, Huang E (2017) Comparative analysis of prophages in Streptococcus mutans genomes. PeerJ 5:e4057

    PubMed  PubMed Central  Google Scholar 

  16. de Sousa JAM, Buffet A, Haudiquet M, Rocha EPC, Rendueles O (2020) Modular prophage interactions driven by capsule serotype select for capsule loss under phage predation. ISME J 14:2980–2996

    PubMed  PubMed Central  Google Scholar 

  17. Arndt D, Grant J, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Boyd EF, Brüssow H (2002) Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 10(11):521–529

    CAS  PubMed  Google Scholar 

  19. Patro LPP, Sudhakar KU, Rathinavelan T (2020) K-PAM: a unified platform to distinguish Klebsiella species K- and O-antigen types, model antigen structures and identify hypervirulent strains. Sci Rep 10:16732

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. https://doi.org/10.1093/bib/bbx108

    Article  PubMed Central  Google Scholar 

  21. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu B, Zheng DD, Jin Q, Chen LH, Yang J (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47(D1):D687–D692

    CAS  PubMed  Google Scholar 

  23. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L, Kalan L, King AM, Koteva K, Morar M, Mulvey MR, O’Brien JS, Pawlowski AC, Piddock LJ, Spanogiannopoulos P, Sutherland AD, Tang I, Taylor PL, Thaker M, Wang W, Yan M, Yu T, Wright GD (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57(7):3348–3357

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, Rocha EPC, Vergnaud G, Gautheret D, Pourcel C (2018) CRISPRCasFinder, an update of CRISPRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 46(W1):W246–W251

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fan X, Li Y, He R, Li Q, He W (2016) Comparative analysis of prophage-like elements in Helicobacter sp. genomes. PeerJ 4:e2012

    PubMed  PubMed Central  Google Scholar 

  26. Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, Iguchi A, Nakayama K, Hayashi T (2009) The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 5:e1000408

    PubMed  PubMed Central  Google Scholar 

  27. Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK (2010) Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1:147

    PubMed  PubMed Central  Google Scholar 

  28. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 28:11–22

    Google Scholar 

  29. Fu Y, Wu Y, Yuan Y, Gao M (2019) Prevalence and diversity analysis of candidate prophages to provide an understanding on their roles in Bacillus thuringiensis. Viruses 11:388

    CAS  PubMed Central  Google Scholar 

  30. Garneau JR, Sekulovic O, Dupuy B, Soutourina O, Monot M, Fortier LC (2018) High prevalence and genetic diversity of large phiCD211 (phiCDIF1296T)-like prophages in Clostridioides difficile. Appl Environ Microbiol 84:e02164-e2217

    PubMed  PubMed Central  Google Scholar 

  31. Burns N, James CE, Harrison E (2015) Polylysogeny magnifies competitiveness of a bacterial pathogen in vivo. Evol Appl 8:346–351

    PubMed  PubMed Central  Google Scholar 

  32. Harrison E, Brockhurst MA (2017) Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. BioEssays. https://doi.org/10.1002/bies.201700112

    Article  PubMed  Google Scholar 

  33. Motlagh AM, Bhattacharjee AS, Coutinho FH, Dutilh BE, Casjens SR, Goel RK (2017) Insights of phage-host interaction in hypersaline ecosystem through metagenomics analyses. Front Microbiol 3(8):352

    Google Scholar 

  34. Touchon M, Bernheim A, Rocha EPC (2016) Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J 10:2744–2754

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Stewart FM, Levin BR (1984) The population biology of bacterial viruses: why be temperate? Theor Popul Biol 26:93–117

    CAS  PubMed  Google Scholar 

  36. Regué M, Hita B, Piqué N, Izquierdo L, Merino S, Fresno S, Benedí VJ, Tomás JM (2004) A gene, uge, is essential for Klebsiella pneumoniae virulence. Infect Immun 72:54–61

    PubMed  PubMed Central  Google Scholar 

  37. Casjens S (2003) Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 49:277–300

    CAS  PubMed  Google Scholar 

  38. Crispim JS, Dias RS, Vidigal PMP, de Sousa MP, da Silva CC, Santana MF, de Paula SO (2018) Screening and characterization of prophages in Desulfovibrio genomes . Sci Rep 8:9273

    PubMed  PubMed Central  Google Scholar 

  39. Tang C, Deng C, Zhang Y, Xiao C, Wang J, Rao X, Hu F, Lu S (2018) Characterization and genomic analyses of Pseudomonas aeruginosa Podovirus TC6: establishment of genus Pa11virus. Front Microbiol 9:2561

    PubMed  PubMed Central  Google Scholar 

  40. Akhter S, Aziz RK, Edwards RA (2012) PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity-and composition-based strategies. Nucleic Acids Res 40:e126

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bleriot I, Trastoy R, Blasco L, Fernández-Cuenca F, Ambroa A, Fernández-García L, Pacios O, Perez-Nadales E, Torre-Cisneros J, Oteo-Iglesias J, Navarro F, Miró E, Pascual A, Bou G, Martínez-Martínez L, Tomas M (2020) Genomic analysis of 40 prophages located in the genomes of 16 carbapenemase-producing clinical strains of Klebsiella pneumoniae. Microb Genom 6(5):e000369

    PubMed Central  Google Scholar 

  42. Lima-Mendez G, Toussaint A, Leplae R (2007) Analysis of the phage sequence space: the benefit of structured information. Virology 365:241–249

    CAS  PubMed  Google Scholar 

  43. Xia G, Wolz C (2014) Phages of Staphylococcus aureus and their impact on host evolution. Infect Genet Evol 21:593–601

    CAS  PubMed  Google Scholar 

  44. Young R (2014) Phage lysis: three steps, three choices, one outcome. J Microbiol 52:43–258

    Google Scholar 

  45. Boyd EF (2012) Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. In: Łobocka Małgorzata, Szybalski Wacław T (eds) Bacteriophage, part A. Elsevier, Amsterdam, pp 91–118

    Google Scholar 

  46. Zeng H, Zhang J, Li C, Xie T, Ling N, Wu Q, Ye Y (2017) The driving force of prophages and CRISPR-Cas system in the evolution of Cronobacter sakazakii. Sci Rep 7:40206

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Edgar R, Qimron U (2010) TheEscherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction. J Bacteriol 192(23):6291–6294

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support received from the Department of Biotechnology, Government of India, under the Bioinformatics Centre programme (BT/BI/04/049/99).

Author information

Authors and Affiliations

Authors

Contributions

MS, PB and GSK designed this study. PB carried out the analysis work and drafted the manuscript. MS was involved in data curation and supervision, reviewing and editing of the manuscript. GSK was involved in funding acquisition and supervision. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Malathi Shekar.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any research involving humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baliga, P., Shekar, M. & Kallappa, G.S. Genome-Wide Identification and Analysis of Chromosomally Integrated Putative Prophages Associated with Clinical Klebsiella pneumoniae Strains. Curr Microbiol 78, 2015–2024 (2021). https://doi.org/10.1007/s00284-021-02472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02472-2

Navigation