Skip to main content
Log in

Rhamnolipids Application for the Removal of Vanadium from Contaminated Sediment

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The use of biosurfactants in bioremediation of hydrocarbons and in the removal of heavy metals in crude oils is considered an attractive subject. The vanadium pollution in soil and sediments had attracted research interest in exploring eco-friendly methods of remediation. The present study was conducted to evaluate the potential of a biosurfactant to remove vanadium from artificially contaminated sand. The biosurfactant producer's strain selection process was carried out from 23 strains in two steps. In the primary screening, four preliminary tests were carried out: the emulsification index (24 and 72 h), the surface tension, and the rate of bacterial adhesion to hydrocarbons. In the secondary screening, the surface tension and rhamnolipids concentration were determined, also critical micellar concentration and dilution were calculated. The RNA 16s of selected strain was sequence and the strain was identified as Pseudomonas sp. By chromatographic and spectroscopic assays, the structure of the rhamnolipids was determined. The maximal vanadium removal efficiency (85.5%) was achieved with a rhamnolipids’ concentration of 240 mg l−1. The vanadium concentration was determined by spectroscopic technique. Rhamnolipids produced by this strain can potentially be used in the removal of vanadium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Imtiaz M, Rizwan MS, Xiong S, Li H, Ashraf M, Shahzad SM, Shahzad M, Rizwan M et al (2015) Vanadium, recent advancements and research prospects: a review. Environ Int 80:79–88

    CAS  PubMed  Google Scholar 

  2. dan Gan C, Chen T, Yang JY (2020) Remediation of vanadium contaminated soil by alfalfa (Medicago sativa L.) combined with vanadium-resistant bacterial strain. Environ Technol Innov 20:101090

    CAS  Google Scholar 

  3. Zou Q, Xiang H, Jiang J, Li D, Aihemaiti A, Yan F, Liu N (2019) Vanadium and chromium-contaminated soil remediation using VFAs derived from food waste as soil washing agents: a case study. J Environ Manag 232:895–901

    CAS  Google Scholar 

  4. Liao Y, Yang J (2020) Remediation of vanadium contaminated soil by nano-hydroxyapatite. J Soils Sediments 20:1534–1544

    CAS  Google Scholar 

  5. Sarubbo LA, Rocha RB, Luna JM, Rufino RD, Santos VA, Banat IM (2015) Some aspects of heavy metals contamination remediation and role of biosurfactants. Chem Ecol 31:707–723

    CAS  Google Scholar 

  6. Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17:1–31

    Google Scholar 

  7. Das AJ, Lal S, Kumar R, Verma C (2017) Bacterial biosurfactants can be an ecofriendly and advanced technology for remediation of heavy metals and co-contaminated soil. Int J Environ Sci Technol 14:1343–1354

    Google Scholar 

  8. Gong Y, Zhao D, Wang Q (2018) An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade. Water Res 147:440–460

    CAS  PubMed  Google Scholar 

  9. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    PubMed  PubMed Central  Google Scholar 

  10. Boveiri Shami R, Shojaei V, Khoshdast H (2019) Efficient cadmium removal from aqueous solutions using a sample coal waste activated by rhamnolipid biosurfactant. J Environ Manag 231:1182–1192

    CAS  Google Scholar 

  11. Giraldo Jd, Gutiérrez S, Merino F (2014) Oil emulsifying activity and removal of heavy metals by Pseudomonas aeruginosa Pb 25 rhamnolipid. Rev Soc Quím Perú 80:35–44

    CAS  Google Scholar 

  12. Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002

    CAS  PubMed  Google Scholar 

  13. Luna JM, Rufino RD, Sarubbo LA (2016) Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Saf Environ Prot 102:558–566

    CAS  Google Scholar 

  14. Wu J, Zhang J, Wang P, Zhu L, Gao M, Zheng Z, Zhan X (2017) Production of rhamnolipids by semi-solid-state fermentation with Pseudomonas aeruginosa RG18 for heavy metal desorption. Bioprocess Biosyst Eng 40:1611–1619

    CAS  PubMed  Google Scholar 

  15. Ciesla J, Koczanska M, Bieganowski A (2018) An interaction of rhamnolipids with Cu(2+) ions. Molecules 23:488

    PubMed Central  Google Scholar 

  16. Tang J, He J, Qiu Z, Xin X (2019) Metal removal effectiveness, fractions, and binding intensity in the sludge during the multiple washing steps using the combined rhamnolipid and saponin. J Soils Sediments 19:1286–1296

    CAS  Google Scholar 

  17. Vijayanand S, Divyashree M (2015) Bioremediation of heavy metals using biosurfactants producing microorganisms. Int J Pharma Sci Res 6:840–847

    CAS  Google Scholar 

  18. Varjani SJ, Gnansounou E (2017) Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresour Technol 245:1258–1265

    CAS  PubMed  Google Scholar 

  19. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu G, Zhong H, Yang X, Liu Y, Shao B, Liu Z (2018) Advances in applications of rhamnolipids biosurfactant in environmental remediation: a review. Biotechnol Bioeng 115:796–814

    CAS  PubMed  Google Scholar 

  21. Dell’Anno F, Sansone C, Ianora A, Dell’Anno A (2018) Biosurfactant-induced remediation of contaminated marine sediments: current knowledge and future perspectives. Mar Environ Res 137:196–205

    PubMed  Google Scholar 

  22. Yu Y-q, Li J-x, Liao Y-l, Yang J-y (2020) Effectiveness, stabilization, and potential feasible analysis of a biochar material on simultaneous remediation and quality improvement of vanadium contaminated soil. J Clean Prod 277:123506

    CAS  Google Scholar 

  23. Yang J, Gao X, Li J, Zuo R, Wang J, Song L, Wang G (2020) The stabilization process in the remediation of vanadium-contaminated soil by attapulgite, zeolite and hydroxyapatite. Ecol Eng 156:105975

    Google Scholar 

  24. Lagatolla C, Benincasa M, Rizzo R, Liut G, Tossi A, Pacor S, Dolzani L, Cescutti P et al (2017) Efficient cadmium removal from aqueous solutions using a sample coal waste activated by rhamnolipid biosurfactant. Exp Parasitol 157:317–324

    Google Scholar 

  25. Barrios Y, Acosta S, Sánchez A, Toledo A, González F, García RM (2012) Study and isolation of aerobic hydrocarbon-degrading bacteria from Cuban shorelines. Biotecnol Apl 29:80–86

    Google Scholar 

  26. Vakili-Nezhaad GR, Al-Wadhahi M, Al-Haddabi S, Vakilinejad A, Acree WE (2019) Surface tension of multicomponent organic mixtures: measurement and correlation. J Mol Liq 296:112008

    CAS  Google Scholar 

  27. Mnif I, Ghribi D (2015) Microbial derived surface active compounds: properties and screening concept. World J Microbiol Biotechnol 31:1001–1020

    CAS  PubMed  Google Scholar 

  28. Sharma R, Singh J, Verma N (2018) Optimization of rhamnolipid production from Pseudomonas aeruginosa PBS towards application for microbial enhanced oil recovery. 3 Biotech 8:20

    PubMed  Google Scholar 

  29. Samykannu M, Achary A (2017) Utilization of agro-industry residue for rhamnolipid production by P. aeruginosa AMB AS7 and its application in chromium removal. Appl Biochem Biotechnol 183:70–90

    CAS  PubMed  Google Scholar 

  30. Chandrasekaran EV, Bemiller JN (1980) 11—Constituent analysis of glycosaminoglycans. Academic Press, New York. https://doi.org/10.1016/B978-0-12-746208-0.50018-9

    Book  Google Scholar 

  31. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bharali P, Konwar BK (2011) Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Appl Biochem Biotechnol 164:1444–1460

    CAS  PubMed  Google Scholar 

  33. Saimmai A, Rukadee O, Onlamool T, Sobhon V, Maneerat S (2012) Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT18. World J Microbiol Biotechnol 28:2973–2986

    CAS  PubMed  Google Scholar 

  34. Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Chichester

    Google Scholar 

  35. Walter V, Syldatk C, Hausmann R (2010) Screening concepts for the isolation of biosurfactant producing microorganisms. In: Sen R (ed) Biosurfactants. Springer, New York, pp 1–13. https://doi.org/10.1007/978-1-4419-5979-9_1

    Chapter  Google Scholar 

  36. Bodour AA, Miller-Maier RM (1998) Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32:273–280

    CAS  Google Scholar 

  37. Elazzazy AM, Abdelmoneim TS, Almaghrabi OA (2015) Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J Biol Sci 22:466–475

    CAS  PubMed  Google Scholar 

  38. Shubhrasekhar C, Supriya M, Karthik L, Gaurav K, Bhaskara Rao KV (2013) Isolation, characterization and application of biosurfactant produced by marine Actinobacteria isolated from Saltpan soil from costal area of Andhra Pradesh, India. Res J Biotechnol 8:18–25

    CAS  Google Scholar 

  39. Tripathi L, Irorere VU, Marchant R, Banat IM (2018) Marine derived biosurfactants: a vast potential future resource. Biotechnol Lett. https://doi.org/10.1007/s10529-018-2602-8

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shahaliyan F, Safahieh A, Abyar H (2015) Evaluation of emulsification index in marine bacteria Pseudomonas sp. and Bacillus sp. Arab J Sci Eng 40:1849–1854

    CAS  Google Scholar 

  41. Mahalingam PU, Sampath N (2014) Isolation, characterization and identification of bacterial biosurfactant. Eur J Exp Biol 4:59–64

    Google Scholar 

  42. Gogoi D, Bhagowati P, Gogoi P, Bordoloi NK, Rafay A, Dolui SK, Mukherjee AK (2016) Structural and physico-chemical characterization of a dirhamnolipid biosurfactant purified from: Pseudomonas aeruginosa: application of crude biosurfactant in enhanced oil recovery. RSC Adv 6:70669–70681

    CAS  Google Scholar 

  43. Chen W, Qu Y, Xu Z, He F, Chen Z, Huang S, Li Y (2017) Heavy metal (Cu, Cd, Pb, Cr) washing from river sediment using biosurfactant rhamnolipid. Environ Sci Pollut Res 24:16344–16350

    CAS  Google Scholar 

  44. Rodríguez O, Abalos A, Vilasó J, Cabrera JG (2017) Screening and characterization of biosurfactant-producing bacteria isolated from contaminated soils with oily wastes. J Environ Treat Tech 5:5–11

    Google Scholar 

  45. Gargouri B, del Mar Contreras M, Ammar S, Segura-Carretero A, Bouaziz M (2017) Biosurfactant production by the crude oil degrading Stenotrophomonas sp. B-2: chemical characterization, biological activities and environmental applications. Environ Sci Pollut Res 24:3769–3779

    CAS  Google Scholar 

  46. Varjani S, Upasani VN (2019) Evaluation of rhamnolipid production by a halotolerant novel strain of Pseudomonas aeruginosa. Bioresour Technol 288:121577

    CAS  PubMed  Google Scholar 

  47. Boccard J, González-Ruiz V, Codesido S, Rudaz S (2019) Mass spectrometry metabolomic data handling for biomarker discovery. In: Proteomic and metabolomic approaches to biomarker discovery. pp 369–388. https://doi.org/10.1016/B978-0-12-818607-7.00021-9.

  48. Islas DJ, Medina SA, Noel J, Rodríguez G, Biotecnología D. De, P, U. P. D. P. C., De Santa E, Pachuca C et al (2010) Revisión/Review Propiedades, Aplicaciones y producción de biotensoactivos. Rev Int Contam Ambient 26:65–84

  49. Rikalović MG, Vrvić MM, Karadžić IM (2015) Rhamnolipid biosurfactant from Pseudomonas aeruginosa—from discovery to application in contemporary technology. J Serbian Chem Soc 80:279–304

    Google Scholar 

  50. Cheng T, Liang J, He J, Hu X, Ge Z, Liu J (2017) A novel rhamnolipid-producing Pseudomonas aeruginosa ZS1 isolate derived from petroleum sludge suitable for bioremediation. AMB Express 7:120

    PubMed  PubMed Central  Google Scholar 

  51. Tiwary M, Dubey AK (2018) Characterization of biosurfactant produced by a novel strain of Pseudomonas aeruginosa, isolate ADMT1. J Surfactants Deterg 21:113–125

    CAS  Google Scholar 

  52. Abalos A, Pinazo A, Infante MR, Casals M, García F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    CAS  Google Scholar 

  53. Monteiro SA, Sassaki GL, de Souza LM, Meira JA, de Araújo JM, Mitchell DA, Ramos LP, Krieger N (2007) Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 147:1–13

    CAS  PubMed  Google Scholar 

  54. Najmi Z, Ebrahimipour G, Franzetti A, Banat IM (2018) Investigation of physicho-chemical properties and characterization of produced biosurfactant by selected indigenous oil-degrading bacterium. Iran J Public Health 47:1151–1159

    PubMed  PubMed Central  Google Scholar 

  55. Zhao F, Shi R, Zhao J, Li G, Bai X, Han S, Zhang Y (2015) Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery. J Appl Microbiol 118:379–389

    CAS  PubMed  Google Scholar 

  56. He C, Dong W, Li J, Li Y, Huang C, Ma Y (2017) Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil. Biotechnol Lett 39:1381–1388

    CAS  PubMed  Google Scholar 

  57. Elshikh M, Sayadi S, Banat IM, Ahmed S, Marchant R, Chamkha M, Dobbin S, Haque F et al (2017) Rhamnolipids from Pseudomonas aeruginosa strain W10; as antibiofilm/antibiofouling products for metal protection. J Basic Microbiol 57:364–375

    PubMed  Google Scholar 

  58. Charles Oluwaseun A, Julius Kola O, Mishra P, Ravinder Singh J, Kumar Singh A, Singh Cameotra S, Oluwasesan Micheal B (2017) Characterization and optimization of a rhamnolipid from Pseudomonas aeruginosa C1501 with novel biosurfactant activities. Sustain Chem Pharm 6:26–36

    Google Scholar 

  59. Christova N, Tuleva B, Cohen R, Ivanova G, Stoev G, Stoilova-Disheva M, Stoineva I (2011) Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Zeitschrift fur Naturforsch Sect C J Biosci 66 C:394–405

    Google Scholar 

  60. El-Amine Bendaha M, Mebrek S, Naimi M, Tifrit A, Belaouni H, Abbouni B (2012) Isolation and comparison of rhamnolipids production in Pseudomonas aeruginosa PB: 2 and Pseudomonas fluorescens PV: 10. Sci Rep 1:544

    Google Scholar 

  61. Sharma D, Ansari MJ, Al-Ghamdi A, Adgaba N, Khan KA, Pruthi V, Al-Waili N (2015) Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization. Environ Sci Pollut Res Int 22:17636–17643

    CAS  PubMed  Google Scholar 

  62. Li S, Pi Y, Bao M, Zhang C, Zhao D, Li Y, Sun P, Lu J (2015) Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons. Mar Pollut Bull 101:219–225

    CAS  PubMed  Google Scholar 

  63. Antoniou E, Fodelianakis S, Korkakaki E, Kalogerakis N (2015) Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front Microbiol 6:274

    PubMed  PubMed Central  Google Scholar 

  64. Tiso T, Zauter R, Tulke H, Leuchtle B, Li W-JJ, Behrens B, Wittgens A, Rosenau F et al (2017) Designer rhamnolipids by reduction of congener diversity: production and characterization. Microb Cell Fact 16:1–14

    Google Scholar 

  65. Sarubbo LA, Brasileiro PPF, Silveira GNM, Juliana M (2018) Application of a low cost biosurfactant in the removal of heavy metals in soil. Chem Eng Trans 64:433–438

    Google Scholar 

  66. Mulligan CN, Wang S (2006) Remediation of a heavy metal-contaminated soil by a rhamnolipid foam. Eng Geol 85:75–81

    Google Scholar 

  67. Ghadami R, Khoshmanesh B, Ghafourinejad AA (2018) The assessment of efficiency of saponin as bio-surfactant in removal of nickel and vanadium from soil contaminated by petroleum, Case study: Ahwaz oil pumping unit. Anthropog Pollut J 2:12–23

    Google Scholar 

  68. Alsaqer S, Marafi M, Banat IM, Ismail W (2018) Biosurfactant-facilitated leaching of metals from spent hydrodesulphurization catalyst. J Appl Microbiol 125:1358–1369

    CAS  PubMed  Google Scholar 

  69. Maikudi Usman M, Dadrasnia A, Tzin Lim K, Fahim Mahmud A, Ismail S (2016) Application of biosurfactants in environmental biotechnology; remediation of oil and heavy metal. AIMS Bioeng 3:289–304

    Google Scholar 

  70. Qi X, Xu X, Zhong C, Jiang T, Wei W, Song X (2018) Removal of cadmium and lead from contaminated soils using sophorolipids from fermentation culture of Starmerella bombicola CGMCC 1576 fermentation. Int J Environ Res Public Health 15:2334

    CAS  PubMed Central  Google Scholar 

  71. Pradhan AK, Pradhan N (2015) Microbial biosurfactant for hydrocarbons and heavy metals bioremediation. Soil Biol 45:91–104

    CAS  Google Scholar 

Download references

Acknowledgements

To Ivette Robles Matos, International Relations Department of the Universty of Oriente, Cuba.

Funding

The research was supported by Oil Research Centre of Cuba.

Author information

Authors and Affiliations

Authors

Contributions

YBSM: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data Curation, Writing—Original Draft, Writing—Review and Editing, Visualization. HFTL: Investigation and Data Curation. AÁR: Conceptualization, Validation, and Supervision. AMM: Methodology, Resources, Writing—Review and Editing. MISL: Writing—Review and Editing.

Corresponding author

Correspondence to Yaima Barrios San Martín.

Ethics declarations

Conflict of interest

The research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. All the authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate and Consent for Publication

All authors agree to have participated in the research proposed to be published and agree to be published in the journal Biodegradation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

San Martín, Y.B., Toledo León, H.F., Rodríguez, A.Á. et al. Rhamnolipids Application for the Removal of Vanadium from Contaminated Sediment. Curr Microbiol 78, 1949–1960 (2021). https://doi.org/10.1007/s00284-021-02445-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02445-5

Navigation