Skip to main content
Log in

Screening and Optimization of Newly Isolated Thermotolerant Lysinibacillus fusiformis Strain SK for Protease and Antifungal Activity

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The current study was designed to isolate, identify and characterize a Bacillus sp. capable of producing protease and exhibiting antifungal activity. A highly potent bacterium capable of producing protease abundantly was isolated from the soil collected from the waste pit near Microbiology Laboratory of Birendra Multiple Campus, Bharatpur and later on identified as Lysinibacillus fusiformis strain SK on the basis of morphological, physiological, biochemical and 16S rDNA gene sequencing techniques. The strain SK showed 98.36% similarity with L. fusiformis strain NBRC 15717. Using R-programming statistical analysis tool, the optimum incubation time for the highest average protease production (APP) (47.2 U/mL) was found to be 22 h at 50 °C and both incubation time and temperature showed a significant impact on the production of protease (P < 0.01). The maximum average relative protease activity (ARPA) was observed at pH 7.8 and 48 °C, whereas the least ARPA was observed in the presence of 80 g/L NaCl and 10 g/L HgCl2 (P  < 0.01). The newly isolated bacterial strain also exhibited strong antifungal activity against aflatoxigenic Aspergillus flavus and Aspergillus parasiticus suggesting that it can be a potential candidate for protease production and activity over a wider range of temperature and pH as well as for synthesizing effective antifungal compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anwar A, Saleemuddin M (1998) Alkaline proteases: a review. Bioresour Technol 64:175–183. https://doi.org/10.1016/S0960-8524(97)00182-X

    Article  CAS  Google Scholar 

  2. Sumantha A, Larroche C, Pandey A (2006) Microbiology and industrial biotechnology of food-grade. Food Technol Biotechnol 44:211–220

    CAS  Google Scholar 

  3. Agasthya AS, Sharma N, Mohan A, Mahal P (2013) Isolation and molecular characterisation of alkaline protease producing Bacillus thuringiensis. Cell Biochem Biophys 66:45–51. https://doi.org/10.1007/s12013-012-9396-4

    Article  CAS  PubMed  Google Scholar 

  4. Dickinson L (2017) Global proteases market—growth, trends and forecasts (2017–2022). https://www.researchandmarkets.com/reports/4115040/global-proteases-market-growth-trends-and. Accessed 9 Aug 2019

  5. Sandhya C, Sumantha A, Pandey A (2004) Proteases. In: Pandey A, Webb C, Soccol CR, Larroche C (eds) Enzyme technology. Asiatech Publishers Inc., New Delhi, pp 312–325

    Google Scholar 

  6. Rai SK, Roy JK, Mukherjee AK (2010) Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II. Appl Microbiol Biotechnol 85:1437–1450. https://doi.org/10.1007/s00253-009-2145-y

    Article  CAS  PubMed  Google Scholar 

  7. Suberu Y, Akande I, Samuel T, Lawal A, Olaniran A (2019) Optimization of protease production in indigenous Bacillus species isolated from soil samples in Lagos, Nigeria using response surface methodology. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2019.01.049

    Article  Google Scholar 

  8. Outtrup HB, Dambmann CS, Lindegaard P (1994) Proteases (United States Patent). 1–8

  9. Lawler D, Smith S (2001) Enzyme-producing strain of Bacillus bacteria (Patent). 1–5

  10. Cordeiro CAM, Martins MLL, Luciano AB (2004) Production and properties of an α-amylase from thermophilic Bacillus sp. Braz J Microbiol 35:91–96. https://doi.org/10.1590/s1517-83822004000100015

    Article  Google Scholar 

  11. Bergey DH, Vos PD, Whitman WB (2009) Bergey’s manual of systematic bacteriology. In: Whitman WB (ed) The Firmicutes, 2nd edn. Springer, Dordrecht

    Google Scholar 

  12. Ahmed I, Yokota A, Yamazoe A, Fujiwara T (2007) Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57:1117–1125. https://doi.org/10.1099/ijs.0.63867-0

    Article  CAS  PubMed  Google Scholar 

  13. Mechri S, Kriaa M, Ben Elhoul Berrouina M, Omrane Benmrad M, Zaraî Jaouadi N, Rekik H, Bouacem K, Bouanane-Darenfed A, Chebbi A, Sayadi S, Chamkha M, Bejar S, Jaouadi B (2017) Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R. Int J Biol Macromol 101:383–397. https://doi.org/10.1016/j.ijbiomac.2017.03.051

    Article  CAS  PubMed  Google Scholar 

  14. Nshimiyimana JB, Khadka S, Mwizerwa EM, Akimana N, Adhikari S, Nsabimana A (2018) Thermophiles: isolation, characterization and screening for enzymatic activity. Biosci Discov 9:430–437

    Google Scholar 

  15. Sapkota S, Khadka S, Gautam A, MaharjanR SR, Dhakal S, Panta OP, Khanal S, Poudel P (2019) Screening and optimization of thermo-tolerant Bacillus sp. for amylase production and antifungal activity. J Inst Sci Technol 24:47–56. https://doi.org/10.3126/jist.v24i1.24628

    Article  Google Scholar 

  16. Che J, Liu B, Liu G, Che J, Bo L, Liu G, Chen Q, Lan J (2017) Volatile organic compounds produced by Lysinibacillus sp. FJAT-4748 possess antifungal activity against Colletotrichum acutatum. Biocontrol Sci Technol 27:1349–1362. https://doi.org/10.1080/09583157.2017.1397600

    Article  Google Scholar 

  17. Yu J, Payne GA, Nierman WC, Machida M, Bennett JW, Campbell BC, Robens JF, Bhatnagar D, Dean RA, Cleveland TE (2008) Aspergillus flavus genomics as a tool for studying the mechanism of aflatoxin formation. Food Addit Contam A 25:1152–1157. https://doi.org/10.1080/02652030802213375

    Article  CAS  Google Scholar 

  18. Cleveland TE, Yu J, Fedorova N, BhatnagarD PayneGA, NiermanWC BJW (2009) Potential of Aspergillus flavus genomics for applications in biotechnology. Trends Biotechnol 27:151–157. https://doi.org/10.1016/j.tibtech.2008.11.008

    Article  CAS  PubMed  Google Scholar 

  19. Zain ME (2011) Impact of mycotoxins on humans and animals. J Saudi Chem Soc 15:129–144. https://doi.org/10.1016/j.jscs.2010.06.006

    Article  CAS  Google Scholar 

  20. Petzinger E, Ziegler K (2000) Ochratoxin A from a toxicological perspective. J Vet Pharmacol Ther 23:91–98. https://doi.org/10.1046/j.1365-2885.2000.00244.x

    Article  CAS  PubMed  Google Scholar 

  21. FAO (2001) Manual on the application of the HACCP system in mycotoxin prevention and control. In: FAO food and nutrition paper https://www.fao.org/3/y1390e/y1390e00.htm

  22. Fratamico PM, Bhunia AK, Smith JL (2008) Foodborne pathogens: microbiology and molecular biology. Horizon Scientific Press, Norofolk

    Google Scholar 

  23. Gourama H, Bullerman LB (2016) Aspergillus flavus and Aspergillus parasiticus: aflatoxigenic fungi of concern in foods and feeds: a review. J Food Prot 58:1395–1404. https://doi.org/10.4315/0362-028x-58.12.1395

    Article  Google Scholar 

  24. International Agency for Research on Cancer (IARC) (2002) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC monographs on the evaluation of carcinogenic risks to hummans. International Agency for Research on Cancer, Lyon

    Google Scholar 

  25. Liu Y, Wu F (2010) Global burden of Aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ Health Perspect 118:818–824. https://doi.org/10.1289/ehp.0901388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153:1677–1692. https://doi.org/10.1099/mic.0.2007/007641-0

    Article  CAS  PubMed  Google Scholar 

  27. Petchkongkaew A, Taillandier P, Gasaluck P, Lebrihi A (2008) Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): screening for aflatoxin B1 and ochratoxin a detoxification. J Appl Microbiol 104:1495–1502. https://doi.org/10.1111/j.1365-2672.2007.03700.x

    Article  CAS  PubMed  Google Scholar 

  28. Pitt JI, Wild CP, Baan RA, Gelderblom WCA, Miller JD, Rile RT, Wu F (2012) Improving public health through mycotoxin control. Lyon, France: (IARC Scientific Publications Series, No. 158).

  29. World Health Organization (WHO) (2018) Food safety and digest. In: Department of food safety and zoonoses. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034270430&partnerID=40&md5=1cfd91de5ef6da00ed45d7b745f4bd6b. Accessed 10 Aug 2019

  30. CDC (2004) Outbreak of aflatoxin poisoning—eastern and central provinces, Kenya. Centers for disease control and prevention. MMWR 53:790–793

    Google Scholar 

  31. Kumar S, Yadav B, Premarajan K, Koirala P (2005) Occurrence of aflatoxin in some of the food and feed in Nepal. Indian J Med Sci 59:331. https://doi.org/10.4103/0019-5359.16649

    Article  PubMed  Google Scholar 

  32. Desjardins AE, Plattner RD, Maragos CM, McCormick SP, Manandhar G, Shrestha K (2000) Occurrence of Fusarium species and mycotoxins in Nepalese maize and wheat and the effect of traditional processing methods on mycotoxin levels. J Agric Food Chem 48:1377–1383. https://doi.org/10.1021/jf991022b

    Article  CAS  PubMed  Google Scholar 

  33. Galil OAA (1992) Fermentation of proteases by Aspergillus fumigates and Pencillium sp. J King Saud Univ 4:127–136

    Article  Google Scholar 

  34. Krieg NR, Holt JC (1984) Bergey’s manual of systematic bacteriology, 1st edn. Williams and Wilkins, Baltimore

    Google Scholar 

  35. Miaoying C (2001) East show strains, Cai Miaoying common bacterial identification manual system. Science Press, Beijing

    Google Scholar 

  36. Forbes B, Sahm D, Weissfeld A (2007) Bailey & Scott’s diagnostic microbiology, 12th edn. Mosby, Saint Louis

    Google Scholar 

  37. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clinical and Laboratory Standards Institute (CLSI) (2017) Performance standards for antimicrobial susceptibility testing. In: CLSI supplement M100, 27th edn. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania, 19087, USA

  39. Vijayaraghavan P, Gnana S, Vincent P (2013) A simple method for the detection of protease activity on agar plates using bromocresolgreen dye. J Biochem Technol 4:628–630

    CAS  Google Scholar 

  40. Tekin N, Cihan AÇ, Takaç ZS, Tüzün CY, Tunç K, Çökmüş C (2012) Alkaline protease production of Bacillus cohnii APT5. Turk J Biol 36:430–440

    CAS  Google Scholar 

  41. Pitt JI, Hocking AD, Glenn DR (1983) An improved medium for the detection of Aspergillus flavus and A. parasiticus. J Appl Bacteriol 54:109–114

    Article  CAS  PubMed  Google Scholar 

  42. Bacon CW, Hinton DM (2002) Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Control 23:274–284

    Article  CAS  Google Scholar 

  43. Miwa H, Ahmed I, Yokota A, Fujiwara T (2009) Lysinibacillus parviboronicapiens sp. nov., a low-boron-containing bacterium isolated from soil. Int J Syst Evol Microbiol 59:1427–1432. https://doi.org/10.1099/ijs.0.65455-0

    Article  CAS  PubMed  Google Scholar 

  44. Priest FG, Goodfellow M, Todd C (1988) A numerical classification of the genus Bacillus. Microbiology 134:1847–1882. https://doi.org/10.1099/00221287-134-7-1847

    Article  CAS  Google Scholar 

  45. Wang L, Fan D, Chen W, Terentjev EM (2015) Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Sci Rep 5:1–11. https://doi.org/10.1038/srep15159

    Article  CAS  Google Scholar 

  46. Hui C, Wei R, Jiang H, Zhao Y, Xu L (2019) Characterization of the ammonification, the relevant protease production and activity in a high-efficiency ammonifier Bacillus amyloliquefaciens DT. Int Biodeterior Biodegrad 142:11–17. https://doi.org/10.1016/j.ibiod.2019.04.009

    Article  CAS  Google Scholar 

  47. Margesin R, Schinner F (1992) Extracellular protease production by psychrotrophic bacteria from glaciers. Int Biodeterior Biodegrad 29:177–189

    Article  CAS  Google Scholar 

  48. Dudhgara PR, Sunil B, Anjana G (2015) Hide dehairing and laundry detergent compatibility testing of thermostable and solvents tolerant alkaline protease from hot spring isolate Bacillus cohniiU3. Online J Biol Sci 15:152–161. https://doi.org/10.3844/ojbsci.2015.152.161

    Article  CAS  Google Scholar 

  49. Gonçalves RN, Gozzini Barbosa SD, Silva-López RE (2016) Proteases from Canavalia ensiformis: active and thermostable enzymes with potential of application in biotechnology. Biotechnol Res Int 2016:1–11. https://doi.org/10.1155/2016/3427098

    Article  CAS  Google Scholar 

  50. Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643. https://doi.org/10.1006/jmbi.1997.1042

    Article  CAS  PubMed  Google Scholar 

  51. Su NW, Wang ML, Kwok KF, Lee MH (2005) Effects of temperature and sodium chloride concentration on the activities of proteases and amylases in soy sauce koji. J Agric Food Chem 53:1521–1525. https://doi.org/10.1021/jf0486390

    Article  CAS  PubMed  Google Scholar 

  52. Mohan M, Kozhithodi S, Nayarisseri A, Elyas KK (2018) Screening, purification and characterization of protease inhibitor from Capsicum frutescens. Bioinformation 14:285–293. https://doi.org/10.6026/97320630014285

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. https://doi.org/10.1016/j.tim.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  54. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37. https://doi.org/10.1016/j.jbiotec.2008.10.011

    Article  CAS  PubMed  Google Scholar 

  55. Zhao Z, Wang Q, Wang K, BrianK LC, Gu Y (2010) Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresour Technol 101:292–297. https://doi.org/10.1016/j.biortech.2009.07.071

    Article  CAS  PubMed  Google Scholar 

  56. Ono M, Kimura N (1991) Antifungal peptides produced by Bacillus subtilis for the biological control of aflatoxin contamination. Proc Jpn Assoc Mycotoxicol 34:23–28

    Article  CAS  Google Scholar 

  57. Klich MA, Arthur KS, Lax AR, Bland JM (1994) Iturin A: a potential new fungicide for stored grains Maren. Mycopathologia 127:123–127

    Article  CAS  PubMed  Google Scholar 

  58. Moyne AL, Shelby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629. https://doi.org/10.1046/j.1365-2672.2001.01290.x

    Article  CAS  PubMed  Google Scholar 

  59. Quentin MJ, Besson F, Peypoux F, Michel G (1982) Action of peptidolipidic antibiotics of the iturin group on erythrocytes. Effect of some lipids on hemolysis. BBA 684:207–211. https://doi.org/10.1016/0005-2736(82)90007-4

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No specific funding was provided to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjib Adhikari.

Ethics declarations

Conflict of interest

All authors state there is no conflict of interests regarding the publication of this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadka, S., Adhikari, S., Thapa, A. et al. Screening and Optimization of Newly Isolated Thermotolerant Lysinibacillus fusiformis Strain SK for Protease and Antifungal Activity. Curr Microbiol 77, 1558–1568 (2020). https://doi.org/10.1007/s00284-020-01976-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01976-7

Navigation