Skip to main content

Advertisement

Log in

Prevalence of qnrVC Genes in Pseudomonas aeruginosa Clinical Isolates from Guangdong, China

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is a serious nosocomial pathogen with high morbidity and mortality due to the increasing resistance to antibiotics in recent years. qnrVC genes have been proven as a source of antibiotic resistance, but relationship with Pseudomonas aeruginosa remains not clear. We aimed to investigate the prevalence and molecular characteristics of qnrVC genes in P. aeruginosa clinical isolates. A total of 874 nonduplicate clinical isolates were collected in Guangdong, China, between January 2011 and June 2015. The presence of qnrVC genes and their genotypes were determined using PCR amplification and DNA sequencing. Antibiotic susceptibilities were tested, and the genetic relatedness of qnrVC-positive isolates were analyzed by multi-locus sequence typing (MLST) and pulsed field gel electrophoresis (PFGE). Consequently, we found 2.3% of P. aeruginosa isolates were present with qnrVC genes, displaying more resistant to various antibiotics. Phylogenetic analysis of qnrVC-positive strains revealed that antibacterial resistance among qnrVC-positive P. aeruginosa isolates in Guangdong probably emerged from multiple sources and was not spread by clonal strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gaynes R, Edwards JR, System NNIS (2005) Overview of nosocomial infections caused by Gram-negative bacilli. Clin Infect Dis 41(6):848–854

    Article  Google Scholar 

  2. Jones RN (2010) Microbial Etiologies of Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia. Clin Infect Dis 51(1):S81–S87

    Article  Google Scholar 

  3. Hu F, Guo Y, Yang Y, Zheng Y, Wu S, Jiang X, Zhu D, Wang F, on behalf of the China Antimicrobial Surveillance Network Study Group (2019) Resistance reported from China antimicrobial surveillance network (CHINET) in 2018. Eur J Clin Microbiol Infect Dis 38(12):2275–2281

    Article  CAS  Google Scholar 

  4. Pachori P, Gothalwal R, Gandhi P (2019) Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis 6(2):109–119

    Article  Google Scholar 

  5. Morrow BJ, Pillar CM, Deane J, Sahm DF, Lynch AS, Flamm RK, Peterson J, Davies TA (2013) Activities of carbapenem and comparator agents against contemporary US Pseudomonas aeruginosa isolates from the CAPITAL surveillance program. Diagn Microbiol Infect Dis 75(4):412–416

    Article  CAS  Google Scholar 

  6. Cayci YT, Coban AY, Gunaydin M (2014) Investigation of plasmid-mediated quinolone resistance in Pseudomonas aeruginosa clinical isolates. Indian J Med Microbiol 32(3):285–289

    Article  Google Scholar 

  7. Oie S, Fukui Y, Yamamoto M, Masuda Y, Kamiya A (2009) In vitro antimicrobial effects of aztreonam, colistin, and the 3-drug combination of aztreonam, ceftazidime and amikacin on metallo-beta-lactamase-producing Pseudomonas aeruginosa. BMC Infect Dis 9:123

    Article  Google Scholar 

  8. Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016:2475067

    Article  Google Scholar 

  9. Varela AR, Nunes OC, Manaia CM (2016) Quinolone resistant Aeromonas spp. as carriers and potential tracers of acquired antibiotic resistance in hospital and municipal wastewater. Sci Total Environ 542:665–671

    Article  CAS  Google Scholar 

  10. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A (2009) Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 22(4):664–689

    Article  CAS  Google Scholar 

  11. Robicsek A, Strahilevitz J, Sahm DF, Jacoby GA, Hooper DC (2006) qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob Agents Chemother 50(8):2872–2874

    Article  CAS  Google Scholar 

  12. Xia R, Ren Y, Xu H (2013) Identification of plasmid-mediated quinolone resistance qnr genes in multidrug-resistant Gram-negative bacteria from hospital wastewaters and receiving waters in the Jinan area, China. Microb Drug Resist 19(6):446–456

    Article  CAS  Google Scholar 

  13. Fonseca EL, Dos Santos FF, Vieira VV, Vicente AC (2008) New qnr gene cassettes associated with superintegron repeats in Vibrio cholerae O1. Emerg Infect Dis 14(7):1129–1131

    Article  CAS  Google Scholar 

  14. Yang X, Xing B, Liang C, Ye Z, Zhang Y (2015) Prevalence and fluoroquinolone resistance of Pseudomonas aeruginosa in a hospital of South China. Int J Clin Exp Med 8(1):1386–1390

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rafiq K, Ahmad K, Ahmad N, Gohar M, Shehzad MA, Saeed MQ (2019) Determination of Qnr allele frequencies in Fluoroquinolone resistant Pseudomonas aeruginosa isolated from burn wounds. J Pak Med Assoc 69(2):250–252

    PubMed  Google Scholar 

  16. Fonseca EL, Vicente AC (2013) Epidemiology of qnrVC alleles and emergence out of the Vibrionaceae family. J Med Microbiol 62(Pt 10):1628–1630

    Article  Google Scholar 

  17. Kumar P, Yadav P, Deshmukh DG, Bulle PA, Singh D, Singh N, Sharma KK, Jain M, Ingole KV, Goel AK, Yadava PK (2017) Vibrio cholerae O1 with ctxB7 variant genotype acquired qnrVC mediated ciprofloxacin resistance in Yavatmal. India Clin Microbiol Infect 23(12):1005–1006

    Article  CAS  Google Scholar 

  18. Kocsis B, Toth A, Gulyas D, Ligeti B, Katona K, Rokusz L, Szabo D (2019) Acquired qnrVC1 and blaNDM-1 resistance markers in an international high-risk Pseudomonas aeruginosa ST773 clone. J Med Microbiol 68(3):336–338

    Article  CAS  Google Scholar 

  19. CLSI (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-ninth edition. CLSI Document M07-A9. Clinical and Laboratory Standards Institute, Wayne, PA, USA

  20. CLSI (2012) Performance standards for antimicrobial susceptibility testing; Twenty-second informational supplement. CLSI Document M100-S22. Clinical and Laboratory Standards Institute, Wayne, PA, USA

  21. Kim HB, Wang M, Ahmed S, Park CH, LaRocque RC, Faruque AS, Salam MA, Khan WA, Qadri F, Calderwood SB, Jacoby GA, Hooper DC (2010) Transferable quinolone resistance in Vibrio cholerae. Antimicrob Agents Chemother 54(2):799–803

    Article  CAS  Google Scholar 

  22. Kidd TJ, Ritchie SR, Ramsay KA, Grimwood K, Bell SC, Rainey PB (2012) Pseudomonas aeruginosa exhibits frequent recombination, but only a limited association between genotype and ecological setting. PLoS ONE 7(9):e44199

    Article  CAS  Google Scholar 

  23. Turton JF, Turton SE, Yearwood L, Yarde S, Kaufmann ME, Pitt TL (2010) Evaluation of a nine-locus variable-number tandem-repeat scheme for typing of Pseudomonas aeruginosa. Clin Microbiol Infect 16(8):1111–1116

    Article  CAS  Google Scholar 

  24. Zhang Y, Zheng Z, Chan EW, Dong N, Xia X, Chen S (2018) Molecular characterization of qnrVC genes and their novel alleles in vibrio spp. isolated from food products in China. Antimicrob Agents Chemother 62(7):e00529–e1518

    Article  CAS  Google Scholar 

  25. Xia R, Guo X, Zhang Y, Xu H (2010) qnrVC-like gene located in a novel complex class 1 integron harboring the ISCR1 element in an Aeromonas punctata strain from an aquatic environment in Shandong Province. China Antimicrob Agents Chemother 54(8):3471–3474

    Article  CAS  Google Scholar 

  26. Kidd TJ, Grimwood K, Ramsay KA, Rainey PB, Bell SC (2011) Comparison of three molecular techniques for typing Pseudomonas aeruginosa isolates in sputum samples from patients with cystic fibrosis. J Clin Microbiol 49(1):263–268

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the research Grants from the Natural Science Foundation of China (No. 81974318), Guangdong Province Science and Technology Innovation Strategy Special Fund (No. 2019B020209001), Natural Science Foundation of Guangdong Province (Nos. 2018A030310170 and 2018A030313279) and the Guangdong Bureau of Traditional Chinese Medicine (No. 20191206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Xu.

Ethics declarations

Conflicts of interest

The authors confirm that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Chen, DQ., Hong, J. et al. Prevalence of qnrVC Genes in Pseudomonas aeruginosa Clinical Isolates from Guangdong, China. Curr Microbiol 77, 1532–1539 (2020). https://doi.org/10.1007/s00284-020-01974-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01974-9

Navigation