Skip to main content
Log in

Assessing the Influence of Dietary History on Gut Microbiota

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Diet is known to play a major role in determining the composition and function of the gut microbiota. Previous studies have often focused on the immediate effects of dietary intervention. How dietary history prior to a given dietary intervention influences the gut microbiota is, however, not well understood. To assess the influence of dietary history, in this study, mice with different dietary histories were subjected to the same dietary interventions, and the gut microbial communities of these mice were characterized by 16S rDNA sequencing. We found that dietary history played a long-lasting role in the composition of the gut microbiota when the dietary switch was moderate. In sharp contrast, such effects nearly vanished when the diet was switched to certain extreme dietary conditions. Interestingly, the abundance of Akkermansia, a bacterial genus associated with loss of body weight, was elevated dramatically in mice subjected to a diet composed exclusively of meat. Our results revealed a more complex picture of the influence of dietary history on gut microbiota than anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allison SD, Martiny JB (2008) Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105(Suppl 1):11512–11519. https://doi.org/10.1073/pnas.0801925105

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arumugam M, Raes J et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180. https://doi.org/10.1038/nature09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belzer C, de Vos WM (2012) Microbes inside from diversity to function: the case of Akkermansia. ISME J 6(8):1449–1458. https://doi.org/10.1038/ismej.2012.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bergström A, Skov TH et al (2014) Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol 80(9):2889–2900. https://doi.org/10.1128/AEM.00342-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bernier JF, Calvert CC, Famula TR, Baldwin RL (1986) Maintenance energy requirement and net energetic efficiency in mice with a major gene for rapid postweaning gain. J Nutr 116(3):419–428. https://doi.org/10.1093/jn/116.3.419

    Article  CAS  PubMed  Google Scholar 

  6. Biasucci G, Benenati B, Morelli L, Bessi E, Boehm G (2008) Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr 138(9):1796S–1800S

    Article  CAS  PubMed  Google Scholar 

  7. Cabrera-Rubio R, Collado MC et al (2012) The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr 96(3):544–551. https://doi.org/10.3945/ajcn.112.037382

    Article  CAS  PubMed  Google Scholar 

  8. Caporaso JG, Lauber CL et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108(Suppl 1):4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  9. Carmody RN, Gerber GK et al (2015) Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17(1):72–84. https://doi.org/10.1016/j.chom.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Bittinger K et al (2012) Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28(16):2106–2113. https://doi.org/10.1093/bioinformatics/bts342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Claesson MJ, Jeffery IB et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184. https://doi.org/10.1038/nature11319

    Article  CAS  PubMed  Google Scholar 

  12. Chu DM, Antony KM et al (2016) The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med 8(1):77. https://doi.org/10.1186/s13073-016-0330-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Collins KH, Paul HA et al (2016) A high-fat high-sucrose diet rapidly alters muscle integrity, inflammation and gut microbiota in male rats. Sci Rep 6:37278. https://doi.org/10.1038/srep37278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dao MC, Everard A et al (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65(3):426–436. https://doi.org/10.1136/gutjnl-2014-308778

    Article  CAS  PubMed  Google Scholar 

  15. David LA, Maurice CF et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. https://doi.org/10.1038/nature12820

    Article  CAS  PubMed  Google Scholar 

  16. De Filippo C, Cavalieri D et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107(33):14691–14696. https://doi.org/10.1073/pnas.1005963107

    Article  PubMed  PubMed Central  Google Scholar 

  17. Derrien M, Belzer C, de Vos WM (2017) Akkermansia muciniphila and its role in regulating host functions. Microb Pathog 106:171–181. https://doi.org/10.1016/j.micpath.2016.02.005

    Article  PubMed  Google Scholar 

  18. Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM (2008) The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 74(5):1646–1648. https://doi.org/10.1128/AEM.01226-07

    Article  CAS  PubMed  Google Scholar 

  19. Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54(Pt 5):1469–1476. https://doi.org/10.1099/ijs.0.02873-0

    Article  CAS  PubMed  Google Scholar 

  20. DeSantis TZ, Hugenholtz P et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied Environ Microbiol 72(7):5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  Google Scholar 

  21. Dominguez-Bello MG, Costello EK et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107(26):11971–11975. https://doi.org/10.1073/pnas.1002601107

    Article  PubMed  PubMed Central  Google Scholar 

  22. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  23. Everard A, Belzer C et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110(22):9066–9071. https://doi.org/10.1073/pnas.1219451110

    Article  PubMed  PubMed Central  Google Scholar 

  24. Everard A, Lazarevic V et al (2014) Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J 8(10):2116–2130. https://doi.org/10.1038/ismej.2014.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Faith JJ, Guruge JL et al (2013) The long-term stability of the human gut microbiota. Science 341(6141):1237439. https://doi.org/10.1126/science.1237439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Faith JJ, McNulty NP, Rey FE, Gordon JI (2011) Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333(6038):101–104. https://doi.org/10.1126/science.1206025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gill SR, Pop M et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359. https://doi.org/10.1126/science.1124234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Girardot C, Scholtalbers J, Sauer S, Su SY, Furlong EE (2016) Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinformatics 17(1):419. https://doi.org/10.1186/s12859-016-1284-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo J, Hall KD (2011) Predicting changes of body weight, body fat, energy expenditure and metabolic fuel selection in C57BL/6 mice. PLoS ONE 5(1):e15961. https://doi.org/10.1371/journal.pone.0015961 6) .

    Article  CAS  Google Scholar 

  30. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292(5519):1115–1118

    Article  CAS  PubMed  Google Scholar 

  31. Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. https://doi.org/10.1038/nature11234

    Article  CAS  Google Scholar 

  32. Karlsson CL, Onnerfalt J et al (2012) The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20(11):2257–2261. https://doi.org/10.1038/oby.2012.110

    Article  PubMed  Google Scholar 

  33. Koenig JE, Spor A et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 108(Suppl 1):4578–4585. https://doi.org/10.1073/pnas.1000081107

    Article  PubMed  Google Scholar 

  34. Lim MY, Rho M et al (2014) Stability of gut enterotypes in Korean monozygotic twins and their association with biomarkers and diet. Sci Rep 4:7348. https://doi.org/10.1038/srep07348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230. https://doi.org/10.1038/nature11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma J, Prince AL et al (2014) High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat Commun 5:3889. https://doi.org/10.1038/ncomms4889

    Article  CAS  PubMed  Google Scholar 

  37. McMurdie PJ1, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muegge BD, Kuczynski J et al (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332(6032):970–974. https://doi.org/10.1126/science.1198719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paul HA, Bomhof MR, Vogel HJ, Reimer RA (2016) Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats. Sci Rep 6:20683. https://doi.org/10.1038/srep20683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rajilic-Stojanovic M, Heilig HG, Tims S, Zoetendal EG, de Vos WM (2012) Long-term monitoring of the human intestinal microbiota composition. Environ Microbiol. https://doi.org/10.1111/1462-2920.12023

    Article  PubMed  Google Scholar 

  41. Rutayisire E, Huang K, Liu Y, Tao F (2016) The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol 16(1):86. https://doi.org/10.1186/s12876-016-0498-0

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schneeberger M, Everard A et al (2015) Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep 5:16643. https://doi.org/10.1038/srep16643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shin NR, Lee JC et al (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63(5):727–735. https://doi.org/10.1136/gutjnl-2012-303839

    Article  CAS  PubMed  Google Scholar 

  44. Sonnenburg ED, Smits SA et al (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529(7585):212–215. https://doi.org/10.1038/nature16504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Swiatecka D, Narbad A, Ridgway KP, Kostyra H (2011) The study on the impact of glycated pea proteins on human intestinal bacteria. Int J Food Microbiol 145(1):267–272. https://doi.org/10.1016/j.ijfoodmicro.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  46. Turnbaugh PJ, Hamady M et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484. https://doi.org/10.1038/nature07540

    Article  CAS  PubMed  Google Scholar 

  47. Turnbaugh PJ, Ley RE et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  48. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Xu L, Liu J, Zhu W, Mao S (2017) A high grain diet dynamically shifted the composition of mucosa-associated microbiota and induced mucosal injuries in the colon of sheep. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02080

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu GD, Chen J et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108. https://doi.org/10.1126/science.1208344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang C, Zhang M et al (2012) Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J 6(10):1848–1857. https://doi.org/10.1038/ismej.2012.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the He lab for their discussion and comments on this manuscript. This work is supported by the Natural Science Foundation of Guangdong Province, China (Project No. 2017A030313121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Xing.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 850 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Ye, C., Yan, B. et al. Assessing the Influence of Dietary History on Gut Microbiota. Curr Microbiol 76, 237–247 (2019). https://doi.org/10.1007/s00284-018-1616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1616-8

Navigation