Skip to main content
Log in

The Versatility of Delftia sp. Isolates as Tools for Bioremediation and Biofertilization Technologies

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Two Pb(II)-resistant bacteria isolated from a soil containing 2,500 mg/kg of Pb were identified by 16S rRNA sequencing analysis as Delftia sp. and designated as 3C and 6C. Both isolates grew at a Pb(II) concentration of 62 mg/L and at the stationary phase showed a Pb(II)-sorption capability of 10 ± 1.5 (3C) and 5 ± 0.8 (6C) mg/g of biomass. Biochemical properties related to heavy metal resistance and plant growth promotion were analyzed and compared with the Cr(VI)-resistant plant growth-promoting Delftia sp. JD2, previously reported by our group. Both isolates and JD2 were resistant to Cr(VI), Pb(II) and many antibiotics, produced siderophores and the phytohormone indole-3-acetic, and showed clover growth-promoting activity in greenhouse conditions. Interestingly, the occurrence of integron class 1 was shown in all isolates. Our results add to previous reports and suggest that bacteria of the genus Delftia could be consider as good candidates for the design of technologies for cleaning up contaminated environments and/or the production of biofertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182

    Article  PubMed  CAS  Google Scholar 

  2. Bazot S, Bois P, Joyeux C, Lebeau T (2007) Mineralization of diuron [3-(3, 4-dichlorophenyl)-1, 1-dimethylure] by co-immobilized Arthrobacter sp. and Delftia acidovornas. Biotechnol Lett 29:749–754

    Article  PubMed  CAS  Google Scholar 

  3. Benndorf D, Babel W (2002) Assimilatory detoxification of herbicides by Delftia acidovorans MC1: induction of two chlorocatechol 1,2-dioxygenases as a response to chemostress. Microbiol 148:2883–2888

    CAS  Google Scholar 

  4. Boucher Y, Labbate M, Koening JE, Stokes HW (2007) Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol 15:301–309

    Article  PubMed  CAS  Google Scholar 

  5. Caravaglia L, Cerdeira SB, Vullo DL (2010) Chromium (VI) biotransformation by β- and γ-proteobacteria from natural polluted environments: a combined biological and chemical treatment for industrial wastes. J Haz Mat 175:104–110

    Article  Google Scholar 

  6. CLSI Clinical and Laboratory Standards Institute (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7–A7, 7th edn. CLSI, Wayne, PA

    Google Scholar 

  7. Dursun AY, Uslu G, Cuci Y, Aksu Z (2003) Bioaccumulation of copper(II), lead(II) and chromium(VI) by growing Aspergillus niger. Process Biochem 38:1647–1651

    Article  CAS  Google Scholar 

  8. Hardwick SA, Stokes HW, Findlay S, Taylor M, Gillings MR (2008) Quantification of class 1 integron abundance in natural environments using real-time quantitative PCR. FEMS Microbiol Lett 278:207–212

    Article  PubMed  CAS  Google Scholar 

  9. Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28:66–76

    Article  PubMed  CAS  Google Scholar 

  10. Juárez-Jiménez B, Manzanera M, Rodelas B, Martínez-Toledo MV, Gonzalez-López J, Crognale S, Pesciaroli C, Fenice M (2010) Metabolic characterization of a strain (BM90) of Delftia tsuruhatensis showing highly diversified capacity to degrade low molecular weight phenols. Biodegrad 21:475–489

    Article  Google Scholar 

  11. Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  PubMed  CAS  Google Scholar 

  12. Malik A (2004) Metal bioremediation through growing cells. Environ Inter 30:261–278

    Article  CAS  Google Scholar 

  13. Mañay N, Cousillas AZ, Alvarez C, Heller T (2008) Lead contamination in Uruguay: the “La Teja” neighborhood case. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 195. Springer Press, New York, pp 93–115

    Chapter  Google Scholar 

  14. Morel MA, Ubalde MC, Braña V, Castro-Sowinski S (2011) Delftia sp. JD2: a potential Cr(VI)-reducing agent with plant growth-promoting activity. Arch Microbiol 193:63–68

    Article  PubMed  CAS  Google Scholar 

  15. Morel MA, Ubalde MC, Olivera-Bravo S, Callejas C, Gill PR, Castro-Sowinski S (2009) Cellular and biochemical response to Cr(VI) in Stenotrophomonas sp. FEMS Microbiol Lett 291:162–168

    Article  PubMed  CAS  Google Scholar 

  16. Müller RH, Babel W (2004) Delftia acidovorans MC1 resists high herbicide concentrations—a study of nutristat growth on (RS)-2-(2,4-dichlorophenoxy) propionate and 2,4-dichlorophenoxyacetate. Biosci Biotechnol Biochem 68:622–630

    Article  PubMed  Google Scholar 

  17. Patil NK, Kundapur R, Shouche YS, Karegoudar TB (2006) Degradation of plasticizer di-n-butylphathalate by Delftia sp. TBKNP-05. Curr Microbiol 52:369–374

    Article  PubMed  CAS  Google Scholar 

  18. Prakash D, Pandey J, Tiwary BN, Jain R (2010) Physiological adaptations and tolerance towards higher concentration of selenite (Se+4) in Enterobacter sp. AR-4, Bacillus sp. AR-6 and Delftia tsuruhatensis Ar-7. Extremophiles 14:261–272

    Article  PubMed  CAS  Google Scholar 

  19. Rosewarne CP, Pettigrove V, Stokes HW, Parsons Y (2010) Class 1 integrons in benthic bacterial communities: abundance, association with Tn402-like transposition modules and evidence for coselection with heavy-metal resistance. FEMS Microbiol Ecol 72:35–46

    Article  PubMed  CAS  Google Scholar 

  20. Singh S, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores Technol 98:2243–2257

    Article  Google Scholar 

  21. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  22. Stokes HW, Nesbø CL, Holley M, Bahl MI, Gillings MR, Boucher Y (2006) Class I integron potentially predating the association with Tn402-like transposition genes are present in a sediment microbial community. J Bacteriol 188:5722–5730

    Article  PubMed  CAS  Google Scholar 

  23. Wen A, Fegan M, Hayward C, Chakraborty S, Sly LI (1999) Phylogenetic relationship among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int J Sys Bacteriol 49:567–576

    Article  CAS  Google Scholar 

  24. Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  PubMed  CAS  Google Scholar 

  25. Xu HX, Davies J, Miao V (2007) Molecular characterization of class 3 integrons from Delftia spp. J Bacteriol 189:6276–6283

    Article  PubMed  CAS  Google Scholar 

  26. Zolgharnein H, Karami K, Mazaheri Assadi M, Dadolahi Sohrab A (2010) Investigation of heavy metals biosorption on Pseudomonas aeruginosa strain MCCB 102 isolated from Persian Gulf. Asian J Biotech 2:99–109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Programa de Desarrollo de las Ciencias Básicas (PEDECIBA-Uruguay) for partial financial support. The work of V. Braña, M. Morel, and C. Martinez were supported by Agencia Nacional de Investigación e Innovación (ANII).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Castro-Sowinski.

Additional information

M.C. Ubalde and V. Braña have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ubalde, M.C., Braña, V., Sueiro, F. et al. The Versatility of Delftia sp. Isolates as Tools for Bioremediation and Biofertilization Technologies. Curr Microbiol 64, 597–603 (2012). https://doi.org/10.1007/s00284-012-0108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0108-5

Keywords

Navigation