Skip to main content

Advertisement

Log in

Thiosulfate Oxidation by Comamonas sp. S23 Isolated from a Sulfur Spring

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A bacterial isolate S23 capable of oxidizing thiosulfate was isolated from a sulfur spring. Strain S23 is gram-negative, aerobic, and motile. The G + C content of DNA is 61.4 mol%. The fatty acid composition and phylogenetic analysis of the 16S rRNA gene sequence of strain S23 showed that it is related to the members of the genus Comamonas, and most closely related to Comamonas testosteroni (99.9% sequence similarity). The isolate S23 exhibited thiosulfate oxidation under a mixotrophic growth condition. Polymerase chain reaction (PCR) using soxB-specific primers and DNA sequencing showed the presence of the soxB gene. This is the first report in Comamonas sp. showing thiosulfate oxidation under a mixotrophic growth condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Appia-Ayme C, Little PJ, Matsumoto Y et al (2001) Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J Bacteriol 183:6107–6118

    Article  PubMed  CAS  Google Scholar 

  3. Brinkhoff T, Kuever J, Muyzer G, Jannasch HW (2005) Genus Thiomicrospira Kuenen and Veldkamp 1972, 253AL. In: Brenner DJ, Krieg NR, Stanley JT (eds) Bergey’s manual of systematic bacteriology. Part B. The gammaproteobacteria, vol 2, 2nd edn. Springer Science, New York, pp 193–199

    Google Scholar 

  4. Berglund F, Sorbo BH (1960) Turbidimetric analysis of inorganic sulfate in serum, plasma and urine. J Clin Lab Invest 12:147–150

    Article  CAS  Google Scholar 

  5. Chou JH, Sheu SY, Lin KY et al (2007) Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus. Int J Syst Evol Microbiol 57:887–891

    Article  PubMed  CAS  Google Scholar 

  6. Das SK, Mishra AK, Tindall BJ et al (1996) Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: Analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46:981–987

    PubMed  CAS  Google Scholar 

  7. Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington, DC, pp 345–352

    Google Scholar 

  8. Elshahed MS, Savage KN, Oren A et al (2004) Haloferax sulfurifontis sp. nov., a halophilic archaeon isolated from a sulfide- and sulfur-rich spring. Int J Syst Evol Microbiol 54:2275–2279

    Article  PubMed  CAS  Google Scholar 

  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  10. Felsenstein J (1989) Phylip-phylogenetic interference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  11. Ferrera I, Massana R, Casamayor EO et al (2004) High-diversity biofilm for the oxidation of sulfide-containing effluents. Appl Microbiol Biotechnol 64:726–734

    Article  PubMed  CAS  Google Scholar 

  12. Friedrich CG (1998) Physiology and genetics of sulfur oxidizing bacteria. Adv Microb Physiol 39:235–289

    Article  PubMed  CAS  Google Scholar 

  13. Friedrich CG, Rother D, Bardischewsky F et al (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882

    Article  PubMed  CAS  Google Scholar 

  14. Friedrich CG, Bardischewsky F, Rother D et al (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259

    Article  PubMed  CAS  Google Scholar 

  15. Gleen H, Quastel JH (1952) Sulfur metabolism in soil. Appl Microbiol 1:70–77

    Google Scholar 

  16. González JM, Covert JS, Whitman WB et al (2003) Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53:1261–1269

    Article  PubMed  CAS  Google Scholar 

  17. Hensen D, Sperling D, Truper HG et al (2006) Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum. Mol Microbiol 62:794–810

    Article  PubMed  CAS  Google Scholar 

  18. Jorgensen BB (1990) The sulfur cycle of freshwater sediments: role of thiosulfate. Limnol Oceanogr 35:1329–1342

    Google Scholar 

  19. Kappler U, Friedrich CG, Trüper HG, Dahl C (2001) Evidence for two pathways of thiosulfate oxidation in Starkeya novella (formerly Thiobacillus novellus). Arch Microbiol 175:102–111

    Article  PubMed  CAS  Google Scholar 

  20. Kelly DP, Wood AP (2005) Genus Thiomonas Moreira and Amils 1997, 527VP. In: Brenner DJ, Krieg NR, Stanley JT (eds) Bergey’s mannual of systematic bacteriology. Part C. The alpha, beta, delta and epsilon proteobacteria, vol 2, 2nd edn. Springer Science, New York, pp 757–759

    Google Scholar 

  21. Kelly DP, Chambers LA, Trudinger PA (1969) Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal Chem 41:898–901

    Article  CAS  Google Scholar 

  22. Kelly DP, Wood AP, Stackebrandt E (2005) Genus Thiobacillus Beijerinck 1904b, 597AL. In: Brenner DJ, Krieg NR, Stanley JT (eds) Bergey’s mannual of systematic bacteriology. Part C. The alpha, beta, delta, and epsilon proteobacteria, vol 2, 2nd edn. Springer Science, New York, pp 764–771

    Google Scholar 

  23. Kletzin A, Urich T, Muller F et al (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36:77–91

    Article  PubMed  CAS  Google Scholar 

  24. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  25. Kuever J, Rainey FA, Widdel F (2005) Genus Desulfovibrio Kluver and van Niel, 397AL. In: Brenner DJ, Krieg NR, Stanley JT (eds) Bergey’s mannual of systematic bacteriology. Part C. The alpha, beta, delta and epsilon proteobacteria, vol 2, 2nd edn. Springer Science, New York, pp 926–938

    Google Scholar 

  26. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  27. Kuykendall LD, Roy MD, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361

    CAS  Google Scholar 

  28. Meade HM, Long SR, Ruvkun GB et al (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122

    PubMed  CAS  Google Scholar 

  29. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  30. Meyer B, Imhoff JF, Kuever J (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria: Evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9:2957–2977

    Article  PubMed  CAS  Google Scholar 

  31. Petri R, Podgorsek L, Imhoff JF (2001) Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 197:171–178

    Article  PubMed  CAS  Google Scholar 

  32. Rainey FA, Kelly DP, Stackebrandt E et al (1999) A reevaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov. Int J Syst Bacteriol 49:645–651

    PubMed  Google Scholar 

  33. Schook LB, Berk RS (1978) Nutritional studies with Pseudomonas aeruginosa grown on inorganic sulfur sources. J Bacteriol 133:1377–1382

    CAS  Google Scholar 

  34. Sharma DP, Thomas C, Hall RH et al (1989) Significance of toxin coregulated pili as protective antigens of Vibrio cholerae in the infant mouse model. Vaccine 7:451–456

    Article  PubMed  CAS  Google Scholar 

  35. Sorokin DY, Teske A, Robertson LA, Kuenen JG (1999) Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria belonging to the Pseudomonas stutzeri group. FEMS Microbiol Ecol 30:113–123

    Article  PubMed  CAS  Google Scholar 

  36. Sorokin DY, Tourova TP, Muyzer G (2005) Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst Appl Microbiol 28:679–687

    Article  PubMed  CAS  Google Scholar 

  37. Strohl WR (2005) Genus Beggiatoa Trevisan 1842, 56AL. In: Brenner DJ, Krieg NR, Stanley JT (eds) Bergey’s mannual of systematic bacteriology. Part B. The gammaproteobacteria, vol 2, 2nd edn. Springer Science, New York, pp 148–161

    Google Scholar 

  38. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  39. Trudinger PA (1967) Metabolism of thiosulfate and tetrathionate by heterotrophic bacteria from soil. J Bacteriol 93:550–559

    PubMed  CAS  Google Scholar 

  40. Tuttle JH, Holmes PE, Jannasch HW (1974) Growth rate stimulation of marine pseudomonads by thiosulfate. Arch Microbiol 99:1–14

    Article  PubMed  CAS  Google Scholar 

  41. Tuttle JH, Schwartz JH, Whited GM (1983) Some properties of thiosulfate-oxidizing enzyme from marine heterotroph 16B. Appl Environ Microbiol 46:438–445

    PubMed  CAS  Google Scholar 

  42. Unz RF, Head IM (2005) Genus Thiothrix Winogradsky 1888, 39AL. In: Brenner DJ, Krieg NR, Stanley JT (eds) Bergey’s mannual of systematic bacteriology. Part B. The gammaproteobacteria, vol 2, 2nd edn. Springer Science, New York, pp 131–142

    Google Scholar 

  43. Vitolins MI, Swaby RJ (1969) Activity of sulphur-oxidizing microorganisms in some Australian soils. Austr J Soil Res 7:171–183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. R.M. Kroppenstedt and Dr. P. Schumann, DSMZ of Germany for their help in determining the G + C content and the fatty acid composition of the organism. This work was supported by the Department of Biotechnology, Ministry of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata K. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, S.K., Narayan, K.D., Bandyopadhyay, S. et al. Thiosulfate Oxidation by Comamonas sp. S23 Isolated from a Sulfur Spring. Curr Microbiol 58, 516–521 (2009). https://doi.org/10.1007/s00284-009-9357-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9357-3

Keywords

Navigation