Skip to main content

Advertisement

Log in

Metalloid Reducing Bacteria Isolated from Deep Ocean Hydrothermal Vents of the Juan de Fuca Ridge, Pseudoalteromonas telluritireducens sp. nov. and Pseudoalteromonas spiralis sp. nov

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Five strains of Gram-negative, rod, curved rod and spiral-shaped bacteria were isolated from the vicinity of deep ocean hydrothermal vents along the Main Endeavour Segment of the Juan de Fuca Ridge in the Pacific Ocean. All strains showed remarkable resistance to high levels of toxic metalloid oxyanions, and were capable of reducing the oxyanions tellurite and selenite to their less toxic elemental forms. Phylogenetic analysis of four strains identified these isolates as close relatives of the genus Pseudoalteromonas within the class Gammaproteobacteria. Pseudoalteromonas agarivorans was the closest relative of strains Te-1-1 and Se-1-2-redT, with, respectively, 99.5 and 99.8% 16S rDNA sequence similarity. Strain Te-2-2T was most closely related to Pseudoalteromonas paragorgicola, with 99.8% 16S rDNA sequence similarity. The DNA G+C base composition was 39.6 to 41.8 mol%, in agreement with other members of the genus Pseudoalteromonas. However, the isolates showed important morphological and physiological differences from previously described species of this genus, with one group forming rod-shaped bacteria typical of Pseudoalteromonas and the other forming vibrioid- to spiral-shaped cells. Based on these differences, and on phylogenetic data, we propose the creation of the new species Pseudoalteromonas telluritireducens sp. nov., with strain Se-1-2-redT (DSMZ=16098T=VKM B-2382T) as the type strain, and Pseudoalteromonas spiralis sp. nov., with strain Te-2-2T (DSMZ=16099T=VKM B-2383T) as the type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Avazeri C, Turner RJ, Pommier J, Weiner JH, Giordano G, Vermeglio A (1997) Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 143:1181–1189

    Article  PubMed  CAS  Google Scholar 

  2. Baumann P, Gauthier MJ, Baumann L (1998) Genus Alteromonas Baumann, Baumann, Mandel and Allen, 1972. In: Krieg NR, Holt JG (eds.) Bergey’s Manual of Systematic Bacteriology, vol. 1, The Williams & Wilkins Co. Baltimore, MD, pp. 343–352

    Google Scholar 

  3. Bowman JP (1998) Pseudoalteromonas prydzensis sp. nov., a psychrotrophic, halotolerant bacterium from Antarctic sea ice. Int J Syst Bacteriol 48:1037–1041

    PubMed  CAS  Google Scholar 

  4. Butterfield DA, McDuff RE, Mottl MJ, Lilley MD, Lupton JE, Massoth GJ (1994) Gradients in the composition of hydrothermal fluids from the Endeavour segment vent field: phase separation and brine loss. J Geophys Res 99:9561–9583

    Article  Google Scholar 

  5. DeSoete G. (1983) A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626

    Article  Google Scholar 

  6. Enger O, Nygaard H, Solberg M, Schei G, Nielson J, Dundas I (1987) Characterization of Alteromonas denitrificans sp. nov. Int J Syst Bacteriol 37:416–421

    Google Scholar 

  7. Feely RA, Lewison M, Massoth GJ, Robert-Baldo G, Lavelle JW, Byrne RH, Von Damm KL, Curl HC (1987) Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge. J Geophys Res 92:11347–11363

    CAS  Google Scholar 

  8. Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  9. Gauthier G, Gauthier M, Christen R (1995) Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45:755–761

    PubMed  CAS  Google Scholar 

  10. Isnansetyo A, Kamei Y (2003) Pseudoalteromonas phenolica sp. nov., a novel marine bacterium that produces phenolic anti-methicillin-resistant Staphylococcus aureus substances. Int J Syst Evol Microbiol 53:583–588

    Article  PubMed  CAS  Google Scholar 

  11. Ivanova EP, Sawabe T, Lysenko AM, Gorshkova NM, Hayashi K, Zhukova NV, Nicolau DV, Christen R, Mikhailov VV (2002) Pseudoalteromonas translucida sp. nov. and Pseudoalteromonas paragorgicola sp. nov., and emended description of the genus. Int J Syst Evol Microbiol 52:1759–1766

    Article  PubMed  CAS  Google Scholar 

  12. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed.) Mammalian Protein Metabolism, Academic Press, New York, pp. 21–132

    Google Scholar 

  13. Kaye JZ, Baross JA (2000) High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiol Ecol 32:249–260

    Article  PubMed  CAS  Google Scholar 

  14. Kellenberger E, Ryter A, Sechaud J (1958) Electron microscope study of DNA-containing plasms. J Biophys Biochem Cytol 4:671–678

    PubMed  CAS  Google Scholar 

  15. Loaec M, Olier R, Guezennec J (1998). Chelating properties of bacterial exopolysaccharides from deep-sea hydrothermal vents. Carbohydr Polym 35:65–70

    Article  CAS  Google Scholar 

  16. Maidak BL, Olsen GL, Larsen N, Overbeek R, McCaughey MJ, Woese CR (1996) The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85

    Article  PubMed  CAS  Google Scholar 

  17. Mesbah M, Whitman WB (1989) Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479:297–306

    Article  PubMed  CAS  Google Scholar 

  18. Mikhailov VV, Romanenko LA, Ivanova EP (2001) The genus Alteromonas and related Proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: An evolving electronic resource for the microbiological community. Springer-Verlag, New York, http://link.springer-ny.com/link/service/books/10125/

  19. Moore MD, Kaplan S (1992) Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 174:1505–1514

    PubMed  CAS  Google Scholar 

  20. Moore MD Kaplan S (1994) Members of the family Rhodospirillaceae reduce heavy-metal oxyanions to maintain redox poise during photosynthetic growth. ASM News 60:17–23

    Google Scholar 

  21. O’Gara JP, Gomelsky M, Kaplan S (1997) Identification and molecular genetic analysis of multiple loci contributing to high-level tellurite resistance in Rhodobacter sphaeroides 2.4.1. Appl Environ Microbiol 63:4713–4720

    PubMed  CAS  Google Scholar 

  22. Pearion CT, Jablonski PE (1999) High level, intrinsic resistance of Natronococcus occultus to potassium tellurite. FEMS Microbiol Lett 174:19–23

    Article  CAS  Google Scholar 

  23. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092

    PubMed  CAS  Google Scholar 

  24. Rathgeber C, Yurkova N, Stackebrandt E, Beatty JT, Yurkov V (2002) Isolation of tellurite- and selenite-resistant bacteria from hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean. Appl Env Microbiol 68:4613–4622

    Article  CAS  Google Scholar 

  25. Romanenko LA, Zhukova NV, Rohde M, Lysenko AM, Mikhailov VV, Stackebrandt E (2003) Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium. Int J Syst Evol Microbiol. 53:125–131

    Article  PubMed  CAS  Google Scholar 

  26. Summers AO, Jacoby GA (1977) Plasmid-determined resistance to tellurium compounds. J Bacteriol 129:276–281

    PubMed  CAS  Google Scholar 

  27. Tamaoka J, Komogata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  28. Taylor DE, Walter EG, Sherburne R, Bazett-Jones DP (1988) Structure and location of tellurium deposited in Escherichia coli cells harboring tellurite resistance plasmids. J Ultrastruct Mol Struct Res 99:18–26

    Article  PubMed  CAS  Google Scholar 

  29. Yurkov V, van Gemerden H (1993) Abundance and salt tolerance of obligately aerobic, phototrophic bacteria in a microbial mat. Methods J Sea Res 31:57–62

    Article  Google Scholar 

  30. Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, Gad’on N, Gorlenko VM, Kompantseva EI, Drews G (1994) Phylogenetic positions of novel aerobic, bacteriochlorophyll a containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434

    Article  PubMed  CAS  Google Scholar 

  31. Yurkov V, Jappe J, Vermeglio A (1996) Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol 62:4195–4198

    PubMed  CAS  Google Scholar 

  32. Yurkov V, Krieger S, Stackebrandt E, Beatty JT (1999) Citromicrobium bathyomarinum, a novel bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment-protein complexes. J Bacteriol 181:4517–4525

    PubMed  CAS  Google Scholar 

  33. Walter EG, Taylor DE (1989) Comparison of tellurite resistance determinants from the IncPα plasmid RP4Ter and the IncHII plasmid pHH1508a. J Bacteriol 171:2160–2165

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from the NSERC (Canada) to V.Y. and J.T.B. We thank C.L. van Dover for collection of samples and H. Trüper for assistance with the nomenclature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Yurkov.

Additional information

The EMBL accession numbers for the 16S rDNA sequences are: Te-1-1, AJ314843; Te-2-2T, AJ314842; Se-1-2-or, AJ314844; Se-1-2-redT, AJ314845.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathgeber, C., Yurkova, N., Stackebrandt, E. et al. Metalloid Reducing Bacteria Isolated from Deep Ocean Hydrothermal Vents of the Juan de Fuca Ridge, Pseudoalteromonas telluritireducens sp. nov. and Pseudoalteromonas spiralis sp. nov. Curr Microbiol 53, 449–456 (2006). https://doi.org/10.1007/s00284-006-0320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0320-2

Keywords

Navigation