Skip to main content

Advertisement

Log in

Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Spontaneous preterm birth (PTB) and preterm pre-labor rupture of the membranes (pPROM) are major pregnancy complications. Although PTB and pPROM have common etiologies, they arise from distinct pathophysiologic pathways. Inflammation is a common underlying mechanism in both conditions. Balanced inflammation is required for fetoplacental growth; however, overwhelming inflammation (physiologic at term and pathologic at preterm) can lead to term and preterm parturition. A lack of effective strategies to control inflammation and reduce the risk of PTB and pPROM suggests that there are several modes of the generation of inflammation which may be dependent on the type of uterine tissue. The avascular fetal membrane (amniochorion), which provides structure, support, and protection to the intrauterine cavity, is one of the key contributors of inflammation. Localized membrane inflammation helps tissue remodeling during pregnancy. Two unique mechanisms that generate balanced inflammation are the progressive development of senescence (aging) and cyclic cellular transitions: epithelial to mesenchymal (EMT) and mesenchymal to epithelial (MET). The intrauterine build-up of oxidative stress at term or in response to risk factors (preterm) can accelerate senescence and promote a terminal state of EMT, resulting in the accumulation of inflammation. Inflammation degrades the matrix and destabilizes membrane function. Inflammatory mediators from damaged membranes are propagated via extracellular vesicles (EV) to maternal uterine tissues and transition quiescent maternal uterine tissues into an active state of labor. Membrane inflammation and its propagation are fetal signals that may promote parturition. This review summarizes the mechanisms of fetal membrane cellular senescence, transitions, and the generation of inflammation that contributes to term and preterm parturitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abrahams VM, Potter JA, Bhat G, Peltier MR, Saade G, Menon R (2013) Bacterial modulation of human fetal membrane Toll-like receptor expression. Am J Reprod Immunol 69(1):33–40. https://doi.org/10.1111/aji.12016

    Article  CAS  PubMed  Google Scholar 

  2. Adams Waldorf KM, Singh N, Mohan AR, Young RC, Ngo L, Das A et al (2015) Uterine overdistention induces preterm labor mediated by inflammation: observations in pregnant women and nonhuman primates. Am J Obstet Gynecol 213(6):830.e831-830.e819. https://doi.org/10.1016/j.ajog.2015.08.028

    Article  CAS  Google Scholar 

  3. Agarwal A, Gupta S, Sharma RK (2005) Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 3:28. https://doi.org/10.1186/1477-7827-3-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agrawal V, Hirsch E (2012) Intrauterine infection and preterm labor. Semin Fetal Neonatal Med 17(1):12–19. https://doi.org/10.1016/j.siny.2011.09.001

    Article  PubMed  Google Scholar 

  5. Alijotas-Reig J, Llurba E, Gris JM (2014) Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells. Placenta 35(4):241–248. https://doi.org/10.1016/j.placenta.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  6. Ananth CV, Vintzileos AM (2006) Epidemiology of preterm birth and its clinical subtypes. J Matern Fetal Neonatal Med 19(12):773–782. https://doi.org/10.1080/14767050600965882

    Article  PubMed  Google Scholar 

  7. Andrews WW, Goldenberg RL, Faye-Petersen O, Cliver S, Goepfert AR, Hauth JC (2006) The Alabama preterm birth study: polymorphonuclear and mononuclear cell placental infiltrations, other markers of inflammation, and outcomes in 23- to 32-week preterm newborn infants. Am J Obstet Gynecol 195(3):803–808. https://doi.org/10.1016/j.ajog.2006.06.083

    Article  CAS  PubMed  Google Scholar 

  8. Antonakopoulos N, Iliodromiti Z, Mastorakos G, Iavazzo C, Valsamakis G, Salakos N et al (2018) Association between brain-derived neurotrophic factor (bdnf) levels in 2(nd) trimester amniotic fluid and fetal development. Mediat Inflamm 2018:8476217. https://doi.org/10.1155/2018/8476217

    Article  CAS  Google Scholar 

  9. Arechavaleta-Velasco F, Ogando D, Parry S, Vadillo-Ortega F (2002) Production of matrix metalloproteinase-9 in lipopolysaccharide-stimulated human amnion occurs through an autocrine and paracrine proinflammatory cytokine-dependent system. Biol Reprod 67(6):1952–1958

    Article  CAS  Google Scholar 

  10. Arenas-Hernandez M, Romero R, St Louis D, Hassan SS, Kaye EB, Gomez-Lopez N (2016) An imbalance between innate and adaptive immune cells at the maternal-fetal interface occurs prior to endotoxin-induced preterm birth. Cell Mol Immunol 13(4):462–473. https://doi.org/10.1038/cmi.2015.22

    Article  CAS  PubMed  Google Scholar 

  11. Barker DJ, Gelow J, Thornburg K, Osmond C, Kajantie E, Eriksson JG (2010a) The early origins of chronic heart failure: impaired placental growth and initiation of insulin resistance in childhood. Eur J Heart Fail 12(8):819–825. https://doi.org/10.1093/eurjhf/hfq069

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barker DJ, Osmond C, Forsen TJ, Thornburg KL, Kajantie E, Eriksson JG (2013) Foetal and childhood growth and asthma in adult life. Acta Paediatr 102(7):732–738. https://doi.org/10.1111/apa.12257

    Article  PubMed  Google Scholar 

  13. Barker DJ, Thornburg KL, Osmond C, Kajantie E, Eriksson JG (2010b) The prenatal origins of lung cancer. II The placenta. Am J Hum Biol 22(4):512–516. https://doi.org/10.1002/ajhb.21041

    Article  PubMed  Google Scholar 

  14. Bartmann C, Segerer SE, Rieger L, Kapp M, Sutterlin M, Kammerer U (2014) Quantification of the predominant immune cell populations in decidua throughout human pregnancy. Am J Reprod Immunol 71(2):109–119. https://doi.org/10.1111/aji.12185

    Article  CAS  PubMed  Google Scholar 

  15. Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, Requejo JH et al (2010) The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ 88(1):31–38. https://doi.org/10.2471/BLT.08.062554

    Article  PubMed  Google Scholar 

  16. Behnia F, Peltier M, Getahun D, Watson C, Saade G, Menon R (2016) High bisphenol A (BPA) concentration in the maternal, but not fetal, compartment increases the risk of spontaneous preterm delivery. J Matern Fetal Neonatal Med 29(22):3583-9. 1-7. https://doi.org/10.3109/14767058.2016.1139570

    Article  CAS  Google Scholar 

  17. Behnia F, Peltier MR, Saade GR, Menon R (2015) Environmental pollutant polybrominated diphenyl ether, a flame retardant, induces primary amnion cell senescence 1. Am J Reprod Immunol. https://doi.org/10.1111/aji.12414

  18. Behnia F, Sheller S, Menon R (2016a) Mechanistic differences leading to infectious and sterile inflammation. Am J Reprod Immunol 75(5):505–518. https://doi.org/10.1111/aji.12496

    Article  CAS  PubMed  Google Scholar 

  19. Behnia F, Sheller S, Menon R (2016b) Mechanistic differences leading to infectious and sterile inflammation 3. Am J Reprod Immunol. https://doi.org/10.1111/aji.12496

  20. Behnia F, Taylor BD, Woodson M, Kacerovsky M, Hawkins H, Fortunato SJ et al (2015a) Chorioamniotic membrane senescence: a signal for parturition? Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2015.05.041

  21. Behnia F, Taylor BD, Woodson M, Kacerovsky M, Hawkins H, Fortunato SJ et al (2015b) Chorioamniotic membrane senescence: a signal for parturition? Am J Obstet Gynecol 213(3):359 e351-316. https://doi.org/10.1016/j.ajog.2015.05.041

    Article  CAS  Google Scholar 

  22. Behnia F, Taylor BD, Woodson M, Kacerovsky M, Hawkins H, Fortunato SJ et al (2015c) Chorioamniotic membrane senescence: a signal for parturition? 1. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2015.05.041

  23. Berghella V, Saccone G (2019) Cervical assessment by ultrasound for preventing preterm delivery. Cochrane Database Syst Rev 9:CD007235. https://doi.org/10.1002/14651858.CD007235.pub4

    Article  PubMed  Google Scholar 

  24. Bonney EA, Krebs K, Saade G, Kechichian T, Trivedi J, Huaizhi Y, Menon R (2016) Differential senescence in feto-maternal tissues during mouse pregnancy. Placenta 43:26–34. https://doi.org/10.1016/j.placenta.2016.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boonkasidecha S, Kannan PS, Kallapur SG, Jobe AH, Kemp MW (2017) Fetal skin as a pro-inflammatory organ: evidence from a primate model of chorioamnionitis. PLoS One 12(9):e0184938. https://doi.org/10.1371/journal.pone.0184938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bredeson S, Papaconstantinou J, Deford JH, Kechichian T, Syed TA, Saade GR, Menon R (2014) HMGB1 promotes a p38MAPK associated non-infectious inflammatory response pathway in human fetal membranes. PLoS One 9(12):e113799. https://doi.org/10.1371/journal.pone.0113799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brosens I, Pijnenborg R, Vercruysse L, Romero R (2011) The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol 204(3):193–201. https://doi.org/10.1016/j.ajog.2010.08.009

    Article  PubMed  Google Scholar 

  28. Bryant-Greenwood GD (1998) The extracellular matrix of the human fetal membranes: structure and function. Placenta 19(1):1–11

    Article  CAS  Google Scholar 

  29. Buerzle W, Haller CM, Jabareen M, Egger J, Mallik AS, Ochsenbein-Koelble N et al (2013) Multiaxial mechanical behavior of human fetal membranes and its relationship to microstructure. Biomech Model Mechanobiol 12(4):747–762. https://doi.org/10.1007/s10237-012-0438-z

    Article  CAS  PubMed  Google Scholar 

  30. Buhimschi CS, Baumbusch MA, Dulay AT, Oliver EA, Lee S, Zhao G et al (2009a) Characterization of RAGE, HMGB1, and S100beta in inflammation-induced preterm birth and fetal tissue injury. Am J Pathol 175(3):958–975. https://doi.org/10.2353/ajpath.2009.090156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buhimschi CS, Baumbusch MA, Dulay AT, Oliver EA, Lee S, Zhao G et al (2009b) Characterization of RAGE, HMGB1, and S100beta in inflammation-induced preterm birth and fetal tissue injury. Am J Pathol 175(3):958–975. https://doi.org/10.2353/ajpath.2009.090156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buhimschi CS, Turan OM, Funai EF, Azpurua H, Bahtiyar MO, Turan S et al (2008) Fetal adrenal gland volume and cortisol/dehydroepiandrosterone sulfate ratio in inflammation-associated preterm birth. Obstet Gynecol 111(3):715–722. https://doi.org/10.1097/AOG.0b013e3181610294

    Article  PubMed  Google Scholar 

  33. Bukowski R, Sadovsky Y, Goodarzi H, Zhang H, Biggio JR, Varner M et al (2017) Onset of human preterm and term birth is related to unique inflammatory transcriptome profiles at the maternal fetal interface. PeerJ 5:e3685. https://doi.org/10.7717/peerj.3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burstein R, Frankel S, Soule SD, Blumenthal HT (1973) Aging of the placenta: autoimmune theory of senescence. Am J Obstet Gynecol 116(2):271–276

    Article  CAS  Google Scholar 

  35. Burton GJ (2009a) Oxygen, the Janus gas; its effects on human placental development and function. J Anat 215(1):27–35. https://doi.org/10.1111/j.1469-7580.2008.00978.x

    Article  CAS  PubMed  Google Scholar 

  36. Burton GJ (2009b) Oxygen, the Janus gas; its effects on human placental development and function. J Anat 215(1):27–35. https://doi.org/10.1111/j.1469-7580.2008.00978.x

    Article  CAS  PubMed  Google Scholar 

  37. Burton GJ, Jaunaiux E (2001) Maternal vascularisation of the human placenta: does the embryo develop in a hypoxic environment? Gynecol Obstet Fertil 29(7-8):503–508

    Article  CAS  Google Scholar 

  38. Burzle W, Mazza E, Moore JJ (2014) About puncture testing applied for mechanical characterization of fetal membranes. J Biomech Eng 136(11). https://doi.org/10.1115/1.4028446

  39. Cai YJ, Huang L, Leung TY, Burd A (2014) A study of the immune properties of human umbilical cord lining epithelial cells. Cytotherapy 16(5):631–639. https://doi.org/10.1016/j.jcyt.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  40. Campisi J (1997a) Aging and cancer: the double-edged sword of replicative senescence. J Am Geriatr Soc 45(4):482–488

    Article  CAS  Google Scholar 

  41. Campisi J (1997b) The biology of replicative senescence. Eur J Cancer 33(5):703–709. https://doi.org/10.1016/S0959-8049(96)00058-5

    Article  CAS  PubMed  Google Scholar 

  42. Canzoneri BJ, Feng L, Grotegut CA, Bentley RC, Heine RP, Murtha AP (2013) The chorion layer of fetal membranes is prematurely destroyed in women with preterm premature rupture of the membranes. Reprod Sci. https://doi.org/10.1177/1933719113483009

  43. Cao B, Stout MJ, Lee I, Mysorekar IU (2014) Placental microbiome and its role in preterm birth. Neoreviews 15(12):e537–e545. https://doi.org/10.1542/neo.15-12-e537

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cappelletti M, Presicce P, Lawson MJ, Chaturvedi V, Stankiewicz TE, Vanoni S et al (2017) Type I interferons regulate susceptibility to inflammation-induced preterm birth. JCI Insight 2(5):e91288. https://doi.org/10.1172/jci.insight.91288

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cha J, Hirota Y, Dey SK (2012) Sensing senescence in preterm birth. Cell Cycle 11(2):205–206. https://doi.org/10.4161/cc.11.2.18781

    Article  CAS  PubMed  Google Scholar 

  46. Chaiworapongsa T, Romero R, Kim JC, Kim YM, Blackwell SC, Yoon BH, Gomez R (2002) Evidence for fetal involvement in the pathologic process of clinical chorioamnionitis. Am J Obstet Gynecol 186(6):1178–1182

    Article  Google Scholar 

  47. Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JF 3rd, Petraglia F (2009) Inflammation and pregnancy. Reprod Sci 16(2):206–215. https://doi.org/10.1177/1933719108329095

    Article  CAS  PubMed  Google Scholar 

  48. Chambers ES, Akbar AN (2020) Can blocking inflammation enhance immunity during aging? J Allergy Clin Immunol 145(5):1323–1331. https://doi.org/10.1016/j.jaci.2020.03.016

    Article  CAS  PubMed  Google Scholar 

  49. Chavan AR, Griffith OW, Wagner GP (2017) The inflammation paradox in the evolution of mammalian pregnancy: turning a foe into a friend. Curr Opin Genet Dev 47:24–32. https://doi.org/10.1016/j.gde.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  50. Chen J, Chen ZJ (2013) Regulation of NF-kappaB by ubiquitination. Curr Opin Immunol 25(1):4–12. https://doi.org/10.1016/j.coi.2012.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi TG, Lee J, Ha J, Kim SS (2011) Apoptosis signal-regulating kinase 1 is an intracellular inducer of p38 MAPK-mediated myogenic signalling in cardiac myoblasts. Biochim Biophys Acta 1813(8):1412–1421. https://doi.org/10.1016/j.bbamcr.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  52. Conde-Agudelo A, Romero R, Nicolaides KH (2020) Cervical pessary to prevent preterm birth in asymptomatic high-risk women: a systematic review and meta-analysis. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2019.12.266

  53. Condon JC, Jeyasuria P, Faust JM, Mendelson CR (2004) Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition. Proc Natl Acad Sci U S A 101(14):4978–4983. https://doi.org/10.1073/pnas.0401124101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853–2868. https://doi.org/10.1371/journal.pbio.0060301

    Article  CAS  PubMed  Google Scholar 

  55. Cox LS, Redman C (2017) The role of cellular senescence in ageing of the placenta. Placenta 52:139–145. https://doi.org/10.1016/j.placenta.2017.01.116

    Article  CAS  PubMed  Google Scholar 

  56. DaSilva-Arnold S, James JL, Al-Khan A, Zamudio S, Illsley NP (2015) Differentiation of first trimester cytotrophoblast to extravillous trophoblast involves an epithelial-mesenchymal transition. Placenta 36(12):1412–1418. https://doi.org/10.1016/j.placenta.2015.10.013

    Article  CAS  PubMed  Google Scholar 

  57. Devaskar SU, Thamotharan M (2007) Metabolic programming in the pathogenesis of insulin resistance. Rev Endocr Metab Disord 8(2):105–113. https://doi.org/10.1007/s11154-007-9050-4

    Article  CAS  PubMed  Google Scholar 

  58. Di Renzo GC, Roura LC (2006) Guidelines for the management of spontaneous preterm labor. J Perinat Med 34(5):359–366. https://doi.org/10.1515/JPM.2006.073

    Article  PubMed  Google Scholar 

  59. Di Sarno R, Raffone A, Saccone G (2019) Effects of progestogens in women with preterm premature rupture of membranes. Minerva Ginecol 71(2):121–124. https://doi.org/10.23736/S0026-4784.18.04335-6

    Article  PubMed  Google Scholar 

  60. Dimri GP, Campisi J (1994) Molecular and cell biology of replicative senescence. Cold Spring Harb Symp Quant Biol 59:67–73

    Article  CAS  Google Scholar 

  61. Dixon CL, Richardson L, Sheller-Miller S, Saade G, Menon R (2018) A distinct mechanism of senescence activation in amnion epithelial cells by infection, inflammation, and oxidative stress. Am J Reprod Immunol 79(3). https://doi.org/10.1111/aji.12790

  62. Dodd JM, Flenady VJ, Cincotta R, Crowther CA (2008) Progesterone for the prevention of preterm birth: a systematic review. Obstet Gynecol 112(1):127–134. https://doi.org/10.1097/AOG.0b013e31817d0262

    Article  CAS  PubMed  Google Scholar 

  63. Dudley DJ (1999) Immunoendocrinology of preterm labor: the link between corticotropin-releasing hormone and inflammation. Am J Obstet Gynecol 180(1 Pt 3):S251–S256

    Article  CAS  Google Scholar 

  64. Dunand C, Hoffmann P, Sapin V, Blanchon L, Salomon A, Sergent F et al (2014) Endocrine gland-derived endothelial growth factor (EG-VEGF) is a potential novel regulator of human parturition. Biol Reprod 91(3):73. https://doi.org/10.1095/biolreprod.114.119990

    Article  CAS  PubMed  Google Scholar 

  65. Dutta EH, Behnia F, Boldogh I, Saade GR, Taylor BD, Kacerovsky M, Menon R (2016) Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes. Mol Hum Reprod 22(2):143–157. https://doi.org/10.1093/molehr/gav074

    Article  CAS  PubMed  Google Scholar 

  66. Edey LF, O'Dea KP, Herbert BR, Hua R, Waddington SN, MacIntyre DA et al (2016) The local and systemic immune response to intrauterine lps in the prepartum mouse. Biol Reprod 95(6):125. https://doi.org/10.1095/biolreprod.116.143289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. El KM, Pandey V, Stetzer B, Mercer BM, Kumar D, Moore RM et al (2006) Fetal membranes from term vaginal deliveries have a zone of weakness exhibiting characteristics of apoptosis and remodeling. J Soc Gynecol Investig 13(3):191–195. https://doi.org/10.1016/j.jsgi.2005.12.010

    Article  Google Scholar 

  68. Elci E, Gunes Elci G, Sayan S (2020) Comparison of the accuracy and reliability of the AmniSure, AMNIOQUICK, and AL-SENSE tests for early diagnosis of premature rupture of membranes. Int J Gynaecol Obstet 149(1):93–97. https://doi.org/10.1002/ijgo.13097

    Article  PubMed  Google Scholar 

  69. Elovitz MA, Wang Z, Chien EK, Rychlik DF, Phillippe M (2003) A new model for inflammation-induced preterm birth: the role of platelet-activating factor and Toll-like receptor-4. Am J Pathol 163(5):2103–2111. https://doi.org/10.1016/S0002-9440(10)63567-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Erlebacher A (2013) Immunology of the maternal-fetal interface. Annu Rev Immunol 31:387–411. https://doi.org/10.1146/annurev-immunol-032712-100003

    Article  CAS  PubMed  Google Scholar 

  71. Faye-Petersen OM (2008) The placenta in preterm birth. J Clin Pathol 61(12):1261–1275. https://doi.org/10.1136/jcp.2008.055244

    Article  CAS  PubMed  Google Scholar 

  72. Feng L, Allen TK, Marinello WP, Murtha AP (2019) Roles of progesterone receptor membrane component 1 in oxidative stress-induced aging in chorion cells. Reprod Sci 26(3):394–403. https://doi.org/10.1177/1933719118776790

    Article  CAS  PubMed  Google Scholar 

  73. Fernandez-Macias R, Martinez-Portilla RJ, Cerrillos L, Figueras F, Palacio M (2019) A systematic review and meta-analysis of randomized controlled trials comparing 17-alpha-hydroxyprogesterone caproate versus placebo for the prevention of recurrent preterm birth. Int J Gynaecol Obstet 147(2):156–164. https://doi.org/10.1002/ijgo.12940

    Article  CAS  PubMed  Google Scholar 

  74. Ferrari F, Facchinetti F, Saade G, Menon R (2016) Placental telomere shortening in stillbirth: a sign of premature senescence? J Matern Fetal Neonatal Med 29(8):1283–1288. https://doi.org/10.3109/14767058.2015.1046045

    Article  CAS  PubMed  Google Scholar 

  75. Figueiredo AS, Schumacher A (2016) The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology 148(1):13–21. https://doi.org/10.1111/imm.12595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Finch CE (1992) Mechanisms in senescence: some thoughts in April 1990 3. Exp Gerontol 27(1):7–16

    Article  CAS  Google Scholar 

  77. Fortunato SJ, Menon R, Swan KF, Lyden TW (1994) Organ culture of amniochorionic membrane in vitro. Am J Reprod Immunol 32(3):184–187

    Article  CAS  Google Scholar 

  78. Fox H (1981) Invited review. A contemporary approach to placental pathology. Pathology 13(2):207–223

    Article  CAS  Google Scholar 

  79. Freund A, Laberge RM, Demaria M, Campisi J (2012) Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 23(11):2066–2075. https://doi.org/10.1091/mbc.E11-10-0884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gao L, Rabbitt EH, Condon JC, Renthal NE, Johnston JM, Mitsche MA et al (2015) Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition. J Clin Invest 125(7):2808–2824. https://doi.org/10.1172/JCI78544

    Article  PubMed  PubMed Central  Google Scholar 

  81. Garg M, Thamotharan M, Dai Y, Thamotharan S, Shin BC, Stout D, Devaskar SU (2012) Early postnatal caloric restriction protects adult male intrauterine growth-restricted offspring from obesity. Diabetes 61(6):1391–1398. https://doi.org/10.2337/db11-1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gnecco JS, Anders AP, Cliffel D, Pensabene V, Rogers LM, Osteen K, Aronoff DM (2017) Instrumenting a fetal membrane on a chip as emerging technology for preterm birth research. Curr Pharm Des. https://doi.org/10.2174/1381612823666170825142649

  83. Goldenberg RL, Culhane JF, Iams JD, Romero R (2008) Epidemiology and causes of preterm birth. Lancet 371(9606):75–84. https://doi.org/10.1016/S0140-6736(08)60074-4

    Article  PubMed  PubMed Central  Google Scholar 

  84. Golightly E, Jabbour HN, Norman JE (2011) Endocrine immune interactions in human parturition. Mol Cell Endocrinol 335(1):52–59. https://doi.org/10.1016/j.mce.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  85. Gomez-Lopez N, Hernandez-Santiago S, Lobb AP, Olson DM, Vadillo-Ortega F (2013) Normal and premature rupture of fetal membranes at term delivery differ in regional chemotactic activity and related chemokine/cytokine production. Reprod Sci 20(3):276–284. https://doi.org/10.1177/1933719112452473

    Article  CAS  PubMed  Google Scholar 

  86. Gomez-Lopez N, Romero R, Plazyo O, Panaitescu B, Furcron AE, Miller D et al (2016) Intra-amniotic administration of HMGB1 induces spontaneous preterm labor and birth. Am J Reprod Immunol 75(1):3–7. https://doi.org/10.1111/aji.12443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gomez-Lopez N, Romero R, Plazyo O, Schwenkel G, Garcia-Flores V, Unkel R et al (2017a) Preterm labor in the absence of acute histologic chorioamnionitis is characterized by cellular senescence of the chorioamniotic membranes. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2017.08.008

  88. Gomez-Lopez N, Romero R, Xu Y, Plazyo O, Unkel R, Than NG et al (2017b) A role for the inflammasome in spontaneous labor at term with acute histologic chorioamnionitis. Reprod Sci 24(6):934–953. https://doi.org/10.1177/1933719116675058

    Article  CAS  PubMed  Google Scholar 

  89. Gomez-Lopez N, StLouis D, Lehr MA, Sanchez-Rodriguez EN, Arenas-Hernandez M (2014) Immune cells in term and preterm labor. Cell Mol Immunol 11(6):571–581. https://doi.org/10.1038/cmi.2014.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gomez-Lopez N, Vadillo-Perez L, Hernandez-Carbajal A, Godines-Enriquez M, Olson DM, Vadillo-Ortega F (2011) Specific inflammatory microenvironments in the zones of the fetal membranes at term delivery. Am J Obstet Gynecol 205(3):235–224. https://doi.org/10.1016/j.ajog.2011.04.019

    Article  PubMed  Google Scholar 

  91. Gonzalez JM, Dong Z, Romero R, Girardi G (2011) Cervical remodeling/ripening at term and preterm delivery: the same mechanism initiated by different mediators and different effector cells. PLoS One 6(11):e26877. https://doi.org/10.1371/journal.pone.0026877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gryglewski RJ, Chlopicki S, Uracz W, Marcinkiewicz E (2001) Significance of endothelial prostacyclin and nitric oxide in peripheral and pulmonary circulation. Med Sci Monit 7(1):1–16

    CAS  PubMed  Google Scholar 

  93. Hadley EE, Sheller-Miller S, Saade G, Salomon C, Mesiano S, Taylor RN et al (2018) Amnion epithelial cell derived exosomes induce inflammatory changes in uterine cells. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2018.08.021

  94. Hamilton S, Oomomian Y, Stephen G, Shynlova O, Tower CL, Garrod A et al (2012) Macrophages infiltrate the human and rat decidua during term and preterm labor: evidence that decidual inflammation precedes labor. Biol Reprod 86(2):39. https://doi.org/10.1095/biolreprod.111.095505

    Article  CAS  PubMed  Google Scholar 

  95. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154(1):8–20. https://doi.org/10.1159/000147748

    Article  CAS  Google Scholar 

  96. Hayflick L (1961) The establishment of a line (WISH) of human amnion cells in continuous cultivation. Exp Cell Res 23:14–20

    Article  CAS  Google Scholar 

  97. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  Google Scholar 

  98. Hinz M, Scheidereit C (2014) The IkappaB kinase complex in NF-kappaB regulation and beyond. EMBO Rep 15(1):46–61. https://doi.org/10.1002/embr.201337983

    Article  CAS  PubMed  Google Scholar 

  99. Hirota Y, Daikoku T, Tranguch S, Xie H, Bradshaw HB, Dey SK (2010a) Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J Clin Invest 120(3):803–815. https://doi.org/10.1172/JCI40051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hirota Y, Daikoku T, Tranguch S, Xie H, Bradshaw HB, Dey SK (2010b) Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J Clin Invest 120(3):803–815. https://doi.org/10.1172/JCI40051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hoang M, Potter JA, Gysler SM, Han CS, Guller S, Norwitz ER, Abrahams VM (2014) Human fetal membranes generate distinct cytokine profiles in response to bacterial Toll-like receptor and nod-like receptor agonists. Biol Reprod 90(2):39. https://doi.org/10.1095/biolreprod.113.115428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hoffman DR, Truong CT, Johnston JM (1986) The role of platelet-activating factor in human fetal lung maturation. Am J Obstet Gynecol 155(1):70–75. https://doi.org/10.1016/0002-9378(86)90081-5

    Article  CAS  PubMed  Google Scholar 

  103. Huszar G, Naftolin F (1984) The myometrium and uterine cervix in normal and preterm labor. N Engl J Med 311(9):571–581. https://doi.org/10.1056/NEJM198408303110905

    Article  CAS  PubMed  Google Scholar 

  104. Ilievski V, Lu SJ, Hirsch E (2007) Activation of toll-like receptors 2 or 3 and preterm delivery in the mouse. Reprod Sci 14(4):315–320. https://doi.org/10.1177/1933719107302959

    Article  CAS  PubMed  Google Scholar 

  105. Iliodromiti Z, Antonakopoulos N, Sifakis S, Tsikouras P, Daniilidis A, Dafopoulos K et al (2012) Endocrine, paracrine, and autocrine placental mediators in labor. Hormones (Athens) 11(4):397–409. https://doi.org/10.14310/horm.2002.1371

    Article  Google Scholar 

  106. Jaiswal MK, Agrawal V, Mallers T, Gilman-Sachs A, Hirsch E, Beaman KD (2013) Regulation of apoptosis and innate immune stimuli in inflammation-induced preterm labor. J Immunol 191(11):5702–5713. https://doi.org/10.4049/jimmunol.1301604

    Article  CAS  PubMed  Google Scholar 

  107. Janzen C, Sen S, Lei MY, Gagliardi de Assumpcao M, Challis J, Chaudhuri G (2017) The role of epithelial to mesenchymal transition in human amniotic membrane rupture. J Clin Endocrinol Metab 102(4):1261–1269. https://doi.org/10.1210/jc.2016-3150

    Article  PubMed  Google Scholar 

  108. Jauniaux E, Poston L, Burton GJ (2006) Placental-related diseases of pregnancy: Involvement of oxidative stress and implications in human evolution. Hum Reprod Update 12(6):747–755. https://doi.org/10.1093/humupd/dml016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jin J, Menon R (2017) Placental exosomes: A proxy to understand pregnancy complications. Am J Reprod Immunol. https://doi.org/10.1111/aji.12788

  110. Jin J, Richardson L, Sheller-Miller S, Zhong N, Menon R (2018) Oxidative stress induces p38MAPK-dependent senescence in the feto-maternal interface cells. Placenta 67:15–23. https://doi.org/10.1016/j.placenta.2018.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Joyce EM, Diaz P, Tamarkin S, Moore R, Strohl A, Stetzer B et al (2016) In-vivo stretch of term human fetal membranes. Placenta 38:57–66. https://doi.org/10.1016/j.placenta.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  112. Keelan JA (2018) Intrauterine inflammatory activation, functional progesterone withdrawal, and the timing of term and preterm birth. J Reprod Immunol 125:89–99. https://doi.org/10.1016/j.jri.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  113. Keelan JA, Blumenstein M, Helliwell RJ, Sato TA, Marvin KW, Mitchell MD (2003) Cytokines, prostaglandins and parturition--a review. Placenta 24(Suppl A):S33–S46

    Article  Google Scholar 

  114. Kendal-Wright CE (2007a) Stretching, mechanotransduction, and proinflammatory cytokines in the fetal membranes. Reprod Sci 14(8 Suppl):35–41. https://doi.org/10.1177/1933719107310763

    Article  CAS  PubMed  Google Scholar 

  115. Kendal-Wright CE (2007b) Stretching, mechanotransduction, and proinflammatory cytokines in the fetal membranes. Reprod Sci 14(8 Suppl):35–41. https://doi.org/10.1177/1933719107310763

    Article  CAS  PubMed  Google Scholar 

  116. Kendal-Wright CE, Hubbard D, Bryant-Greenwood GD (2008) Chronic stretching of amniotic epithelial cells increases pre-B cell colony-enhancing factor (PBEF/visfatin) expression and protects them from apoptosis. Placenta 29(3):255–265. https://doi.org/10.1016/j.placenta.2007.12.008

    Article  CAS  PubMed  Google Scholar 

  117. Kendal-Wright CE, Hubbard D, Gowin-Brown J, Bryant-Greenwood GD (2010) Stretch and inflammation-induced Pre-B cell colony-enhancing factor (PBEF/Visfatin) and Interleukin-8 in amniotic epithelial cells. Placenta 31(8):665–674. https://doi.org/10.1016/j.placenta.2010.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim KW, Romero R, Park HS, Park CW, Shim SS, Jun JK, Yoon BH (2007) A rapid matrix metalloproteinase-8 bedside test for the detection of intraamniotic inflammation in women with preterm premature rupture of membranes. Am J Obstet Gynecol 197(3):292–295. https://doi.org/10.1016/j.ajog.2007.06.040

    Article  CAS  PubMed  Google Scholar 

  119. King AE, Kelly RW, Sallenave JM, Bocking AD, Challis JR (2007) Innate immune defences in the human uterus during pregnancy 6. Placenta 28(11-12):1099–1106. https://doi.org/10.1016/j.placenta.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  120. Kramer MS, Papageorghiou A, Culhane J, Bhutta Z, Goldenberg RL, Gravett M et al (2012) Challenges in defining and classifying the preterm birth syndrome. Am J Obstet Gynecol 206(2):108–112. https://doi.org/10.1016/j.ajog.2011.10.864

    Article  PubMed  Google Scholar 

  121. Kshirsagar SK, Alam SM, Jasti S, Hodes H, Nauser T, Gilliam M et al (2012) Immunomodulatory molecules are released from the first trimester and term placenta via exosomes. Placenta 33(12):982–990. https://doi.org/10.1016/j.placenta.2012.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kumar D, Novince R, Strohl A, Mercer BM, Mansour JM, Moore RM, Moore JJ (2009) A new methodology to measure strength of adherence of the fetal membrane components, amnion and the choriodecidua. Placenta 30(6):560–563. https://doi.org/10.1016/j.placenta.2009.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kumar D, Schatz F, Moore RM, Mercer BM, Rangaswamy N, Mansour JM et al (2011) The effects of thrombin and cytokines upon the biomechanics and remodeling of isolated amnion membrane, in vitro. Placenta 32(3):206–213

    Article  CAS  Google Scholar 

  124. Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113(Pt 20):3613–3622

    CAS  PubMed  Google Scholar 

  125. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196. https://doi.org/10.1038/nrm3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Land WG (2015a) The role of damage-associated molecular patterns (DAMPSs) in human diseases: part ii: damps as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos Univ Med J 15(2):e157–e170

    PubMed  PubMed Central  Google Scholar 

  127. Land WG (2015b) The role of damage-associated molecular patterns in human diseases: part i - promoting inflammation and immunity. Sultan Qaboos Univ Med J 15(1):e9–e21

    PubMed  PubMed Central  Google Scholar 

  128. Langen ES, Sit A, Sherwin K, Lyell DJ, Blumenfeld YJ, El-Sayed YY (2018) A double-blind, randomized, placebo-controlled trial of 17 alpha-hydroxyprogesterone caproate in the management of preterm premature rupture of membranes. Am J Perinatol 35(8):779–784. https://doi.org/10.1055/s-0037-1617428

    Article  PubMed  Google Scholar 

  129. Lappas M (2013) NOD1 and NOD2 regulate proinflammatory and prolabor mediators in human fetal membranes and myometrium via nuclear factor-kappa B. Biol Reprod 89(1):14. https://doi.org/10.1095/biolreprod.113.110056

    Article  CAS  PubMed  Google Scholar 

  130. Lash GE (2015) molecular cross-talk at the feto-maternal interface. Cold Spring Harb Perspect Med 5(12). https://doi.org/10.1101/cshperspect.a023010

  131. Lavu N, Richardson L, Radnaa E, Kechichian T, Urrabaz-Garza R, Sheller-Miller S et al (2019) Oxidative stress-induced downregulation of glycogen synthase kinase 3 beta in fetal membranes promotes cellular senescencedagger. Biol Reprod 101(5):1018–1030. https://doi.org/10.1093/biolre/ioz119

    Article  PubMed  Google Scholar 

  132. Lavu N, Sheller-Miller S, Kechichian T, Cayenne S, Bonney EA, Menon R (2020) Changes in mediators of pro-cell growth, senescence, and inflammation during murine gestation. Am J Reprod Immunol 83(3):e13214. https://doi.org/10.1111/aji.13214

    Article  CAS  PubMed  Google Scholar 

  133. Lim R, Barker G, Lappas M (2014) The TLR2 ligand FSL-1 and the TLR5 ligand Flagellin mediate pro-inflammatory and pro-labour response via MyD88/TRAF6/NF-kappaB-dependent signalling. Am J Reprod Immunol 71(5):401–417. https://doi.org/10.1111/aji.12229

    Article  CAS  PubMed  Google Scholar 

  134. Liu J, Dong P, Wang S, Li J (2019) Natural killer, natural killer T, helper and cytotoxic T cells in the decidua from recurrent spontaneous abortion with normal and abnormal chromosome karyotypes. Biochem Biophys Res Commun 508(2):354–360. https://doi.org/10.1016/j.bbrc.2018.11.156

    Article  CAS  PubMed  Google Scholar 

  135. Liu S, Diao L, Huang C, Li Y, Zeng Y, Kwak-Kim JYH (2017) The role of decidual immune cells on human pregnancy. J Reprod Immunol 124:44–53. https://doi.org/10.1016/j.jri.2017.10.045

    Article  CAS  PubMed  Google Scholar 

  136. Lockwood CJ (1994) Recent advances in elucidating the pathogenesis of preterm delivery, the detection of patients at risk, and preventative therapies. Curr Opin Obstet Gynecol 6(1):7–18

    Article  CAS  Google Scholar 

  137. Longini M, Perrone S, Vezzosi P, Marzocchi B, Kenanidis A, Centini G et al (2007) Association between oxidative stress in pregnancy and preterm premature rupture of membranes. Clin Biochem 40(11):793–797. https://doi.org/10.1016/j.clinbiochem.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  138. Malak TM, Ockleford CD, Bell SC, Dalgleish R, Bright N, Macvicar J (1993) Confocal immunofluorescence localization of collagen types I, III, IV, V and VI and their ultrastructural organization in term human fetal membranes. Placenta 14(4):385–406

    Article  CAS  Google Scholar 

  139. Manuck TA, Esplin MS, Biggio J, Bukowski R, Parry S, Zhang H et al (2015) The phenotype of spontaneous preterm birth: application of a clinical phenotyping tool. Am J Obstet Gynecol 212(4):487 e481-487 e411. https://doi.org/10.1016/j.ajog.2015.02.010

    Article  Google Scholar 

  140. Martin LF, Richardson LS, da Silva MG, Sheller-Miller S, Menon R (2019) Dexamethasone induces primary amnion epithelial cell senescence through telomere-P21 associated pathwaydagger. Biol Reprod 100(6):1605–1616. https://doi.org/10.1093/biolre/ioz048

    Article  PubMed  PubMed Central  Google Scholar 

  141. Masoro EJ (1995) Glucocorticoids and aging 1. Aging (Milano) 7(6):407–413

    CAS  Google Scholar 

  142. Mauri A, Ehret AE, Perrini M, Maake C, Ochsenbein-Kolble N, Ehrbar M et al (2015a) Deformation mechanisms of human amnion: Quantitative studies based on second harmonic generation microscopy. J Biomech 48(9):1606–1613. https://doi.org/10.1016/j.jbiomech.2015.01.045

    Article  PubMed  Google Scholar 

  143. Mauri A, Perrini M, Ehret AE, De Focatiis DS, Mazza E (2015b) Time-dependent mechanical behavior of human amnion: macroscopic and microscopic characterization. Acta Biomater 11:314–323. https://doi.org/10.1016/j.actbio.2014.09.012

    Article  PubMed  Google Scholar 

  144. McCabe ER, Carrino GE, Russell RB, Howse JL (2014) Fighting for the next generation: US Prematurity in 2030. Pediatrics 134(6):1193–1199. https://doi.org/10.1542/peds.2014-2541

    Article  PubMed  Google Scholar 

  145. McIntire RH, Ganacias KG, Hunt JS (2008) Programming of human monocytes by the uteroplacental environment. Reprod Sci 15(5):437–447. https://doi.org/10.1177/1933719107314065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mendelson CR (2009) Minireview: fetal-maternal hormonal signaling in pregnancy and labor. Mol Endocrinol 23(7):947–954. https://doi.org/10.1210/me.2009-0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mendelson CR, Montalbano AP, Gao L (2017) Fetal-to-maternal signaling in the timing of birth. J Steroid Biochem Mol Biol 170:19–27. https://doi.org/10.1016/j.jsbmb.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  148. Menon R (2008) Spontaneous preterm birth, a clinical dilemma: etiologic, pathophysiologic and genetic heterogeneities and racial disparity. Acta Obstet Gynecol Scand 87(6):590–600. https://doi.org/10.1080/00016340802005126

    Article  PubMed  Google Scholar 

  149. Menon R (2014) Oxidative stress damage as a detrimental factor in preterm birth pathology 14. Front Immunol 5:567. https://doi.org/10.3389/fimmu.2014.00567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Menon R (2016) Human fetal membranes at term: dead tissue or signalers of parturition? Placenta 44:1–5. https://doi.org/10.1016/j.placenta.2016.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Menon R (2019) Initiation of human parturition: signaling from senescent fetal tissues via extracellular vesicle mediated paracrine mechanism. Obstet Gynecol Sci 62(4):199–211. https://doi.org/10.5468/ogs.2019.62.4.199

    Article  PubMed  PubMed Central  Google Scholar 

  152. Menon R, Behnia F, Polettini J, Saade GR, Campisi J, Velarde M (2016a) Placental membrane aging and HMGB1 signaling associated with human parturition. Aging (Albany NY) 8(2):216–230. https://doi.org/10.18632/aging.100891

    Article  CAS  Google Scholar 

  153. Menon R, Boldogh I, Hawkins HK, Woodson M, Polettini J, Syed TA et al (2014a) Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am J Pathol 184(6):1740–1751. https://doi.org/10.1016/j.ajpath.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  154. Menon R, Boldogh I, Urrabaz-Garza R, Polettini J, Syed TA, Saade GR et al (2013) Senescence of primary amniotic cells via oxidative DNA damage. PLoS One 8(12):e83416. https://doi.org/10.1371/journal.pone.0083416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Menon R, Bonney EA, Condon J, Mesiano S, Taylor RN (2016b) Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update 22(5):535–560. https://doi.org/10.1093/humupd/dmw022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Menon R, Debnath C, Lai A, Guanzon D, Bhatnagar S, Kshetrapal P et al (2020) Protein profile changes in circulating placental extracellular vesicles in term and preterm births: a longitudinal study. Endocrinology 161(4). https://doi.org/10.1210/endocr/bqaa009

  157. Menon R, Debnath C, Lai A, Guanzon D, Bhatnagar S, Kshetrapal PK et al (2019) Circulating exosomal miRNA profile during term and preterm birth pregnancies: a longitudinal study. Endocrinology 160(2):249–275. https://doi.org/10.1210/en.2018-00836

    Article  CAS  PubMed  Google Scholar 

  158. Menon R, Fortunato SJ (2004) Fetal membrane inflammatory cytokines: a switching mechanism between the preterm premature rupture of the membranes and preterm labor pathways. J Perinat Med 32(5):391–399. https://doi.org/10.1515/JPM.2004.134

    Article  CAS  PubMed  Google Scholar 

  159. Menon R, Fortunato SJ, Milne GL, Brou L, Carnevale C, Sanchez SC et al (2011) Amniotic fluid eicosanoids in preterm and term births: effects of risk factors for spontaneous preterm labor. Obstet Gynecol 118(1):121–134. https://doi.org/10.1097/AOG.0b013e3182204eaa

    Article  PubMed  PubMed Central  Google Scholar 

  160. Menon R, McIntyre JO, Matrisian LM, Fortunato SJ (2006) Salivary proteinase activity: a potential biomarker for preterm premature rupture of the membranes. Am J Obstet Gynecol 194(6):1609–1615. https://doi.org/10.1016/j.ajog.2006.02.052

    Article  CAS  PubMed  Google Scholar 

  161. Menon R, Mesiano S, Taylor RN (2017) Programmed fetal membrane senescence and exosome-mediated signaling: a mechanism associated with timing of human parturition. Front Endocrinol (Lausanne) 8:196. https://doi.org/10.3389/fendo.2017.00196

    Article  Google Scholar 

  162. Menon R, Moore JJ (2020) Fetal membranes, not a mere appendage of the placenta, but a critical part of the fetal-maternal interface controlling parturition. Obstet Gynecol Clin N Am 47(1):147–162. https://doi.org/10.1016/j.ogc.2019.10.004

    Article  Google Scholar 

  163. Menon R, N. N, Bredeson S, Polettini J (2015) Fetal Membranes: Potential Source of Preterm Birth Biomarkers. In: P. V. Preedy VR (ed) General Methods in Biomarker Research and Their Applications. Springer Science Publisher. (Reprinted from: Not in File), pp 483–529

  164. Menon R, Papaconstantinou J (2016) p38 Mitogen activated protein kinase (MAPK): a new therapeutic target for reducing the risk of adverse pregnancy outcomes. Expert Opin Ther Targets:1–16. https://doi.org/10.1080/14728222.2016.1216980

  165. Menon R, Polettini J, Syed TA, Saade GR, Boldogh I (2014b) Expression of 8-oxoguanine glycosylase in human fetal membranes. Am J Reprod Immunol. https://doi.org/10.1111/aji.12220

  166. Menon R, Richardson LS, Lappas M (2018) Fetal membrane architecture, aging and inflammation in pregnancy and parturition. Placenta. https://doi.org/10.1016/j.placenta.2018.11.003

  167. Menon R, Taylor BD (2019) Exploring inflammatory mediators in fetal and maternal compartments during human parturition. Obstet Gynecol 134(4):765–773. https://doi.org/10.1097/AOG.0000000000003470

    Article  CAS  PubMed  Google Scholar 

  168. Menon R, Taylor RN, Fortunato SJ (2010) Chorioamnionitis--a complex pathophysiologic syndrome. Placenta 31(2):113–120. https://doi.org/10.1016/j.placenta.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  169. Menon R, Yu J, Basanta-Henry P, Brou L, Berga SL, Fortunato SJ, Taylor RN (2012a) Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS One 7(2):e31136. https://doi.org/10.1371/journal.pone.0031136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Menon R, Yu J, Basanta-Henry P, Brou L, Berga SL, Fortunato SJ, Taylor RN (2012b) Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS One 7(2):e31136. https://doi.org/10.1371/journal.pone.0031136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mercer BM, Goldenberg RL, Meis PJ, Moawad AH, Shellhaas C, Das A et al (2000) The preterm prediction study: prediction of preterm premature rupture of membranes through clinical findings and ancillary testing. the national institute of child health and human development maternal-fetal medicine units network. Am J Obstet Gynecol 183(3):738–745

    Article  CAS  Google Scholar 

  172. Mercer BM, Lewis R (1997) Preterm labor and preterm premature rupture of the membranes. Diagnosis and management. Infect Dis Clin N Am 11(1):177–201

    Article  CAS  Google Scholar 

  173. Mesiano S, Chan EC, Fitter JT, Kwek K, Yeo G, Smith R (2002) Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J Clin Endocrinol Metab 87(6):2924–2930. https://doi.org/10.1210/jcem.87.6.8609

    Article  CAS  PubMed  Google Scholar 

  174. Mesiano S, Wang Y, Norwitz ER (2011) Progesterone receptors in the human pregnancy uterus: do they hold the key to birth timing? Reprod Sci 18(1):6–19. https://doi.org/10.1177/1933719110382922

    Article  CAS  PubMed  Google Scholar 

  175. Millar LK, Stollberg J, DeBuque L, Bryant-Greenwood G (2000) Fetal membrane distention: determination of the intrauterine surface area and distention of the fetal membranes preterm and at term. Am J Obstet Gynecol 182(1 Pt 1):128–134

    Article  CAS  Google Scholar 

  176. Miyazaki C, Moreno Garcia R, Ota E, Swa T, Oladapo OT, Mori R (2016) Tocolysis for inhibiting preterm birth in extremely preterm birth, multiple gestations and in growth-restricted fetuses: a systematic review and meta-analysis. Reprod Health 13:4. https://doi.org/10.1186/s12978-015-0115-7

    Article  PubMed  PubMed Central  Google Scholar 

  177. Moco NP, Martin LF, Pereira AC, Polettini J, Peracoli JC, Coelho KI, da Silva MG (2013) Gene expression and protein localization of TLR-1, -2, -4 and -6 in amniochorion membranes of pregnancies complicated by histologic chorioamnionitis. Eur J Obstet Gynecol Reprod Biol 171(1):12–17. https://doi.org/10.1016/j.ejogrb.2013.07.036

    Article  CAS  PubMed  Google Scholar 

  178. Mogami H, Hari Kishore A, Akgul Y, Word RA (2017) Healing of Preterm Ruptured Fetal Membranes. Sci Rep 7(1):13139. https://doi.org/10.1038/s41598-017-13296-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mohan AR, Sooranna SR, Lindstrom TM, Johnson MR, Bennett PR (2007) The effect of mechanical stretch on cyclooxygenase type 2 expression and activator protein-1 and nuclear factor-kappaB activity in human amnion cells. Endocrinology 148(4):1850–1857. https://doi.org/10.1210/en.2006-1289

    Article  CAS  PubMed  Google Scholar 

  180. Montalbano AP, Hawgood S, Mendelson CR (2013) Mice deficient in surfactant protein A (SP-A) and SP-D or in TLR2 manifest delayed parturition and decreased expression of inflammatory and contractile genes. Endocrinology 154(1):483–498. https://doi.org/10.1210/en.2012-1797

    Article  CAS  PubMed  Google Scholar 

  181. Mor G (2008) Inflammation and pregnancy: the role of toll-like receptors in trophoblast-immune interaction. Ann N Y Acad Sci 1127:121–128. https://doi.org/10.1196/annals.1434.006

    Article  CAS  PubMed  Google Scholar 

  182. Mor G, Cardenas I, Abrahams V, Guller S (2011) Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci 1221:80–87. https://doi.org/10.1111/j.1749-6632.2010.05938.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Mor G, Kwon JY (2015) Trophoblast-microbiome interaction: a new paradigm on immune regulation. Am J Obstet Gynecol 213(4 Suppl):S131–S137. https://doi.org/10.1016/j.ajog.2015.06.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Muglia LJ, Katz M (2010) The enigma of spontaneous preterm birth. N Engl J Med 362(6):529–535. https://doi.org/10.1056/NEJMra0904308

    Article  CAS  PubMed  Google Scholar 

  185. Murtha AP, Menon R (2015) Regulation of fetal membrane inflammation: a critical step in reducing adverse pregnancy outcome. Am J Obstet Gynecol 213(4):447–448. https://doi.org/10.1016/j.ajog.2015.07.008

    Article  PubMed  Google Scholar 

  186. Myatt L (2010) Review: Reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta 31(Suppl):S66–S69. https://doi.org/10.1016/j.placenta.2009.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Myatt L, Cui X (2004) Oxidative stress in the placenta. Histochem. Cell Biol 122(4):369–382. https://doi.org/10.1007/s00418-004-0677-x

    Article  CAS  PubMed  Google Scholar 

  188. Myatt L, Sun K (2010) Role of fetal membranes in signaling of fetal maturation and parturition. Int J Dev Biol 54(2-3):545–553. https://doi.org/10.1387/ijdb.082771lm

    Article  CAS  PubMed  Google Scholar 

  189. Nancy P, Erlebacher A (2012) Epigenetic repression of chemokine expression at the maternal-fetal interface as a mechanism of feto-maternal tolerance. Med Sci (Paris) 28(12):1037–1039. https://doi.org/10.1051/medsci/20122812005

    Article  Google Scholar 

  190. Negishi Y, Takahashi H, Kuwabara Y, Takeshita T (2018a) Innate immune cells in reproduction. J Obstet Gynaecol Res. https://doi.org/10.1111/jog.13759

  191. Negishi Y, Takahashi H, Kuwabara Y, Takeshita T (2018b) Innate immune cells in reproduction. J Obstet Gynaecol Res 44(11):2025–2036. https://doi.org/10.1111/jog.13759

    Article  PubMed  Google Scholar 

  192. Nogami M, Kimura T, Seki S, Matsui Y, Yoshida T, Koike-Soko C et al (2016) A human amnion-derived extracellular matrix-coated cell-free scaffold for cartilage repair: in vitro and in vivo studies. Tissue Eng Part A 22(7-8):680–688. https://doi.org/10.1089/ten.TEA.2015.0285

    Article  CAS  PubMed  Google Scholar 

  193. Norwitz ER, Bonney EA, Snegovskikh VV, Williams MA, Phillippe M, Park JS, Abrahams VM (2015) Molecular regulation of parturition: the role of the decidual clock. Cold Spring Harb Perspect Med 5(11). https://doi.org/10.1101/cshperspect.a023143

  194. Olson DM, Zaragoza DB, Shallow MC, Cook JL, Mitchell BF, Grigsby P, Hirst J (2003) Myometrial activation and preterm labour: evidence supporting a role for the prostaglandin F receptor--a review. Placenta 24(Suppl A):S47–S54. https://doi.org/10.1053/plac.2002.0938

    Article  CAS  PubMed  Google Scholar 

  195. Osman I, Young A, Jordan F, Greer IA, Norman JE (2006) Leukocyte density and proinflammatory mediator expression in regional human fetal membranes and decidua before and during labor at term. J Soc Gynecol Investig 13(2):97–103. https://doi.org/10.1016/j.jsgi.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  196. Padron JG, Saito Reis CA, Kendal-Wright CE (2020) The role of danger associated molecular patterns in human fetal membrane weakening. Front Physiol 11:602. https://doi.org/10.3389/fphys.2020.00602

    Article  PubMed  PubMed Central  Google Scholar 

  197. Park JS, Park CW, Lockwood CJ, Norwitz ER (2005) Role of cytokines in preterm labor and birth. Minerva Ginecol 57(4):349–366

    CAS  PubMed  Google Scholar 

  198. Parmley T (1984) Placental senescence. Adv Exp Med Biol 176:127–132

    Article  CAS  Google Scholar 

  199. Pavlicev M, Norwitz ER (2018) Human parturition: nothing more than a delayed menstruation. Reprod Sci 25(2):166–173. https://doi.org/10.1177/1933719117725830

    Article  PubMed  Google Scholar 

  200. Pei D, Shu X, Gassama-Diagne A, Thiery JP (2019) Mesenchymal-epithelial transition in development and reprogramming. Nat Cell Biol 21(1):44–53. https://doi.org/10.1038/s41556-018-0195-z

    Article  CAS  PubMed  Google Scholar 

  201. Peltier MR (2003) Immunology of term and preterm labor. Reprod Biol Endocrinol 1:122. https://doi.org/10.1186/1477-7827-1-122

    Article  PubMed  PubMed Central  Google Scholar 

  202. Petraglia F, Arcuri F, de Ziegler D, Chapron C (2012) Inflammation: a link between endometriosis and preterm birth. Fertil Steril 98(1):36–40. https://doi.org/10.1016/j.fertnstert.2012.04.051

    Article  PubMed  Google Scholar 

  203. Phillippe M, Sawyer MR, Edelson PK (2019) The telomere gestational clock: increasing short telomeres at term in the mouse. Am J Obstet Gynecol 220(5):496 e491-496 e498. https://doi.org/10.1016/j.ajog.2019.01.218

    Article  CAS  Google Scholar 

  204. Polettini J, Behnia F, Taylor BD, Saade GR, Taylor RN, Menon R (2015a) Telomere fragment induced amnion cell senescence: a contributor to parturition? PLoS One 10(9):e0137188. https://doi.org/10.1371/journal.pone.0137188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Polettini J, Behnia F, Taylor BD, Saade GR, Taylor RN, Menon R (2015b) Telomere fragment induced amnion cell senescence: a contributor to parturition? PLoS One 10(9):e0137188. https://doi.org/10.1371/journal.pone.0137188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Polettini J, Richardson LS, Menon R (2018) Oxidative stress induces senescence and sterile inflammation in murine amniotic cavity. Placenta 63:26–31. https://doi.org/10.1016/j.placenta.2018.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Polettini J, Silva MG, Kacerovsky M, Syed TA, Saade GR, Menon R (2016) Screening of lysyl oxidase (LOX) and lysyl oxidase like (LOXL) enzyme expression and activity in preterm prelabor rupture of fetal membranes. J Perinat Med 44(1):99–109. https://doi.org/10.1515/jpm-2014-0337

    Article  CAS  PubMed  Google Scholar 

  208. Presicce P, Senthamaraikannan P, Alvarez M, Rueda CM, Cappelletti M, Miller LA et al (2015) Neutrophil recruitment and activation in decidua with intra-amniotic IL-1beta in the preterm rhesus macaque. Biol Reprod 92(2):56. https://doi.org/10.1095/biolreprod.114.124420

    Article  CAS  PubMed  Google Scholar 

  209. Reinl EL, England SK (2015) Fetal-to-maternal signaling to initiate parturition 1. J Clin Invest 125(7):2569–2571. https://doi.org/10.1172/JCI82576

    Article  PubMed  PubMed Central  Google Scholar 

  210. Richardson L, Dixon CL, Aguilera-Aguirre L, Menon R (2018) Oxidative stress-induced tgf-beta/tab1-mediated p38mapk activation in human amnion epithelial cells. Biol Reprod. https://doi.org/10.1093/biolre/ioy135

  211. Richardson L, Gnecco J, Ding T, Osteen K, Rogers LM, Aronoff DM, Menon R (2019) Fetal membrane organ-on-chip: an innovative approach to study cellular interactions. Reprod Sci 1933719119828084. https://doi.org/10.1177/1933719119828084

  212. Richardson L, Menon R (2018) Proliferative, migratory, and transition properties reveal metastate of human amnion cells. Am J Pathol 188(9):2004–2015. https://doi.org/10.1016/j.ajpath.2018.05.019

    Article  PubMed  PubMed Central  Google Scholar 

  213. Richardson LS, Taylor RN, Menon R (2020) Reversible EMT and MET mediate amnion remodeling during pregnancy and labor. Sci Signal 13(618). https://doi.org/10.1126/scisignal.aay1486

  214. Richardson LS, Vargas G, Brown T, Ochoa L, Sheller-Miller S, Saade GR et al (2017) Discovery and characterization of human amniochorionic membrane microfractures. Am J Pathol. https://doi.org/10.1016/j.ajpath.2017.08.019

  215. Rinaldi SF, Makieva S, Saunders PT, Rossi AG, Norman JE (2017) Immune cell and transcriptomic analysis of the human decidua in term and preterm parturition. Mol Hum Reprod 23(10):708–724. https://doi.org/10.1093/molehr/gax038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Robins JC, Marsit CJ, Padbury JF, Sharma SS (2011) Endocrine disruptors, environmental oxygen, epigenetics and pregnancy. Front Biosci (Elite Ed) 3:690–700

    Google Scholar 

  217. Rodier F, Kim SH, Nijjar T, Yaswen P, Campisi J (2005) Cancer and aging: the importance of telomeres in genome maintenance. Int J Biochem Cell Biol 37(5):977–990. https://doi.org/10.1016/j.biocel.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  218. Roh JS, Sohn DH (2018) Damage-associated molecular patterns in inflammatory diseases. Immune Netw 18(4):e27. https://doi.org/10.4110/in.2018.18.e27

    Article  PubMed  PubMed Central  Google Scholar 

  219. Romero R, Dey SK, Fisher SJ (2014a) Preterm labor: one syndrome, many causes. Science 345(6198):760–765. https://doi.org/10.1126/science.1251816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Romero R, Dey SK, Fisher SJ (2014b) Preterm labor: one syndrome, many causes. Science 345(6198):760–765. https://doi.org/10.1126/science.1251816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O et al (2006) The preterm parturition syndrome. BJOG 113(Suppl 3):17–42. https://doi.org/10.1111/j.1471-0528.2006.01120.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Romero R, Gotsch F, Pineles B, Kusanovic JP (2007) Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev 65(12 Pt 2):S194–S202

    Article  Google Scholar 

  223. Rosen T, Kuczynski E, O'Neill LM, Funai EF, Lockwood CJ (2001) Plasma levels of thrombin-antithrombin complexes predict preterm premature rupture of the fetal membranes. J Matern Fetal Med 10(5):297–300

    Article  CAS  Google Scholar 

  224. Rubens CE, Sadovsky Y, Muglia L, Gravett MG, Lackritz E, Gravett C (2014) Prevention of preterm birth: harnessing science to address the global epidemic. Sci Transl Med 6(262):262–265. https://doi.org/10.1126/scitranslmed.3009871

    Article  Google Scholar 

  225. Ruiz-Bonilla V, Perdiguero E, Gresh L, Serrano AL, Zamora M, Sousa-Victor P et al (2008) Efficient adult skeletal muscle regeneration in mice deficient in p38beta, p38gamma and p38delta MAP kinases. Cell Cycle 7(14):2208–2214. https://doi.org/10.4161/cc.7.14.6273

    Article  CAS  PubMed  Google Scholar 

  226. Saito S, Lin YC, Murayama Y, Hashimoto K, Yokoyama KK (2012) Human amnion-derived cells as a reliable source of stem cells 19. Curr Mol Med 12(10):1340–1349 CMM-EPUB-20120924-2 [pii]

    Article  CAS  Google Scholar 

  227. Sanders JL, Newman AB (2013) Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol. Rev. https://doi.org/10.1093/epirev/mxs008

  228. Santoni G, Cardinali C, Morelli MB, Santoni M, Nabissi M, Amantini C (2015) Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J Neuroinflammation 12:21. https://doi.org/10.1186/s12974-015-0239-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Sato BL, Collier ES, Vermudez SA, Junker AD, Kendal-Wright CE (2016) Human amnion mesenchymal cells are pro-inflammatory when activated by the Toll-like receptor 2/6 ligand, macrophage-activating lipoprotein-2. Placenta 44:69–79. https://doi.org/10.1016/j.placenta.2016.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Schliefsteiner C, Peinhaupt M, Kopp S, Logl J, Lang-Olip I, Hiden U et al (2017) Human placental hofbauer cells maintain an anti-inflammatory m2 phenotype despite the presence of gestational diabetes mellitus. Front Immunol 8:888. https://doi.org/10.3389/fimmu.2017.00888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Schmitz T, Sentilhes L, Lorthe E, Gallot D, Madar H, Doret-Dion M et al (2019) Preterm premature rupture of the membranes: Guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF). Eur J Obstet Gynecol Reprod Biol 236:1–6. https://doi.org/10.1016/j.ejogrb.2019.02.021

    Article  PubMed  Google Scholar 

  232. Schumacher A, Sharkey DJ, Robertson SA, Zenclussen AC (2018) Immune cells at the fetomaternal interface: how the microenvironment modulates immune cells to foster fetal development. J Immunol 201(2):325–334. https://doi.org/10.4049/jimmunol.1800058

    Article  CAS  PubMed  Google Scholar 

  233. Seferovic MD, Pace RM, Carroll M, Belfort B, Major AM, Chu DM et al (2019) Visualization of microbes by 16S in situ hybridization in term and preterm placentas without intraamniotic infection. Am J Obstet Gynecol 221(2):146 e141-146 e123. https://doi.org/10.1016/j.ajog.2019.04.036

    Article  CAS  Google Scholar 

  234. Sharp AN, Heazell AE, Crocker IP, Mor G (2010) Placental apoptosis in health and disease. Am J Reprod Immunol 64(3):159–169. https://doi.org/10.1111/j.1600-0897.2010.00837.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Sheller-Miller S, Trivedi J, Yellon SM, Menon R (2019) Exosomes Cause Preterm Birth in Mice: Evidence for Paracrine Signaling in Pregnancy. Sci Rep 9(1):608. https://doi.org/10.1038/s41598-018-37002-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Sheller-Miller S, Urrabaz-Garza R, Saade G, Menon R (2017) Damage-associated molecular pattern markers hmgb1 and cell-free fetal telomere fragments in oxidative-stressed amnion epithelial cell-derived exosomes. J Reprod Immunol 123:3–11. https://doi.org/10.1016/j.jri.2017.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Shynlova O, Tsui P, Jaffer S, Lye SJ (2009) Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. Eur J Obstet Gynecol Reprod Biol 144(Suppl 1):S2–S10. https://doi.org/10.1016/j.ejogrb.2009.02.044

    Article  CAS  PubMed  Google Scholar 

  238. Simhan HN, Canavan TP (2005) Preterm premature rupture of membranes: diagnosis, evaluation and management strategies. BJOG 112(Suppl 1):32–37. https://doi.org/10.1111/j.1471-0528.2005.00582.x

    Article  PubMed  Google Scholar 

  239. Sinkey RG, Guzeloglu-Kayisli O, Arlier S, Guo X, Semerci N, Moore R et al (2020) Thrombin-induced decidual colony-stimulating factor-2 promotes abruption-related preterm birth by weakening fetal membranes. Am J Pathol 190(2):388–399. https://doi.org/10.1016/j.ajpath.2019.10.020

    Article  CAS  PubMed  Google Scholar 

  240. Smith R (1998) Alterations in the hypothalamic pituitary adrenal axis during pregnancy and the placental clock that determines the length of parturition. J Reprod Immunol 39(1-2):215–220

    Article  CAS  Google Scholar 

  241. Smith R, Mesiano S, McGrath S (2002) Hormone trajectories leading to human birth. Regul Pept 108(2-3):159–164

    Article  CAS  Google Scholar 

  242. Smith R, Nicholson RC (2007) Corticotrophin releasing hormone and the timing of birth. Front Biosci 12:912–918

    Article  CAS  Google Scholar 

  243. Snegovskikh VV, Schatz F, Arcuri F, Toti P, Kayisli UA, Murk W et al (2009) Intra-amniotic infection upregulates decidual cell vascular endothelial growth factor (VEGF) and neuropilin-1 and -2 expression: implications for infection-related preterm birth. Reprod. Sci 16(8):767–780. https://doi.org/10.1177/1933719109336623

    Article  CAS  PubMed  Google Scholar 

  244. Song D, Shi Y (2014) Immune system modifications and feto-maternal immune tolerance. Chin Med J 127(17):3171–3180

    PubMed  Google Scholar 

  245. Southcombe J, Tannetta D, Redman C, Sargent I (2011) The immunomodulatory role of syncytiotrophoblast microvesicles 40. PLoS. One 6(5):e20245. https://doi.org/10.1371/journal.pone.0020245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Strauss JF 3rd. (2013) Extracellular matrix dynamics and fetal membrane rupture. Reprod Sci 20(2):140–153. https://doi.org/10.1177/1933719111424454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Sun K, He P, Yang K (2002) Intracrine induction of 11beta-hydroxysteroid dehydrogenase type 1 expression by glucocorticoid potentiates prostaglandin production in the human chorionic trophoblast. Biol Reprod 67(5):1450–1455. https://doi.org/10.1095/biolreprod.102.005892

    Article  CAS  PubMed  Google Scholar 

  248. Svensson-Arvelund J, Mehta RB, Lindau R, Mirrasekhian E, Rodriguez-Martinez H, Berg G et al (2015) The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol 194(4):1534–1544. https://doi.org/10.4049/jimmunol.1401536

    Article  CAS  PubMed  Google Scholar 

  249. Szekeres-Bartho J (2002) Immunological relationship between the mother and the fetus. Int Rev Immunol 21(6):471–495

    Article  CAS  Google Scholar 

  250. Tattersall M, Engineer N, Khanjani S, Sooranna SR, Roberts VH, Grigsby PL et al (2008) Pro-labour myometrial gene expression: are preterm labour and term labour the same? Reproduction 135(4):569–579. https://doi.org/10.1530/REP-07-0461

    Article  CAS  PubMed  Google Scholar 

  251. Thornburg KL (2015) The programming of cardiovascular disease. J Dev Orig Health Dis 6(5):366–376. https://doi.org/10.1017/S2040174415001300

    Article  CAS  PubMed  Google Scholar 

  252. Trivedi S, Joachim M, McElrath T, Kliman HJ, Allred EN, Fichorova RN et al (2012) Fetal-placental inflammation, but not adrenal activation, is associated with extreme preterm delivery. Am J Obstet Gynecol 206(3):236 e231-238. https://doi.org/10.1016/j.ajog.2011.12.004

    Article  Google Scholar 

  253. Vicovac L, Aplin JD (1996) Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anat (Basel) 156(3):202–216. https://doi.org/10.1159/000147847

    Article  CAS  Google Scholar 

  254. Villar J, Papageorghiou AT, Knight HE, Gravett MG, Iams J, Waller SA et al (2012) The preterm birth syndrome: a prototype phenotypic classification. Am J Obstet. Gynecol 206(2):119–123. https://doi.org/10.1016/j.ajog.2011.10.866

    Article  PubMed  Google Scholar 

  255. Vink JY, Qin S, Brock CO, Zork NM, Feltovich HM, Chen X et al (2016) A new paradigm for the role of smooth muscle cells in the human cervix. Am J Obstet Gynecol 215(4):478 e471-478 e411. https://doi.org/10.1016/j.ajog.2016.04.053

    Article  Google Scholar 

  256. Vogel JP, Nardin JM, Dowswell T, West HM, Oladapo OT (2014) Combination of tocolytic agents for inhibiting preterm labour. Cochrane Database Syst Rev (7):CD006169. https://doi.org/10.1002/14651858.CD006169.pub2

  257. von Zglinicki T (2003) Replicative senescence and the art of counting 20. Exp Gerontol 38(11-12):1259–1264

    Article  Google Scholar 

  258. von Zglinicki T, Martin-Ruiz CM (2005) Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med 5(2):197–203

    Article  Google Scholar 

  259. Wadhwa PD, Culhane JF, Rauh V, Barve SS (2001) Stress and preterm birth: neuroendocrine, immune/inflammatory, and vascular mechanisms. Matern Child Health J 5(2):119–125

    Article  CAS  Google Scholar 

  260. Wallack L, Thornburg K (2016) Developmental Origins, Epigenetics, and Equity: Moving Upstream. Matern Child Health J 20(5):935–940. https://doi.org/10.1007/s10995-016-1970-8

    Article  PubMed  Google Scholar 

  261. Whittle WL, Gibb W, Challis JR (2000) The characterization of human amnion epithelial and mesenchymal cells: the cellular expression, activity and glucocorticoid regulation of prostaglandin output. Placenta 21(4):394–401. https://doi.org/10.1053/plac.1999.0482

    Article  CAS  PubMed  Google Scholar 

  262. Xu Y, Romero R, Miller D, Silva P, Panaitescu B, Theis KR et al (2018) Innate lymphoid cells at the human maternal-fetal interface in spontaneous preterm labor. Am J Reprod Immunol 79(6):e12820. https://doi.org/10.1111/aji.12820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Yellon SM (2017) Contributions to the dynamics of cervix remodeling prior to term and preterm birth. Biol Reprod 96(1):13–23. https://doi.org/10.1095/biolreprod.116.142844

    Article  PubMed  Google Scholar 

  264. Zhang J, Shynlova O, Sabra S, Bang A, Briollais L, Lye SJ (2017) Immunophenotyping and activation status of maternal peripheral blood leukocytes during pregnancy and labour, both term and preterm. J Cell Mol Med 21(10):2386–2402. https://doi.org/10.1111/jcmm.13160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is funded by NIH/NIAD (1R21AI140249-01A1) and NIH/NICHD (5 R03 HD098469 02 and 1R01HD084532-01A1) to R Menon

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramkumar Menon.

Ethics declarations

Conflicts of interest

Authors report no conflict of interest

Additional information

This article is a contribution to the special issue on Preterm birth: Pathogenesis and clinical consequences revisited – Guest Editors: Anke Diemert and Petra Arck

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menon, R., Behnia, F., Polettini, J. et al. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin Immunopathol 42, 431–450 (2020). https://doi.org/10.1007/s00281-020-00808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-020-00808-x

Keywords

Navigation