Skip to main content
Log in

Treatment of type 2 diabetes by targeting interleukin-1: a meta-analysis of 2921 patients

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

With obesity and type 2 diabetes prevalence steadily increasing and no effective means in sight to support the population in obtaining and maintaining stable weight loss, there is an imminent need for pharmacological therapy to treat and prevent type 2 diabetes. Current anti-diabetic treatment is symptomatic, and very few drugs have both a strong preclinical rationale and clinical proof-of-principle as therapies targeting pathogenic processes in type 2 diabetes. The emerging appreciation of low-grade inflammation as a significant cause of insulin resistance and beta cell failure warrants exploring anti-inflammatory compounds as drug candidates. Since recent studies have demonstrated considerable phenotypic heterogeneity in the type 2 diabetic syndrome, the concept of one drug fits all is naïve, and biomarkers for the selection of type 2 diabetes subtypes for differentiated treatment based on genetic and pathogenic stratification are urgently needed. Biologics antagonizing the master pro-inflammatory cytokine interleukin-1 is one of the few principles specifically targeting low-grade inflammation in type 2 diabetes. Although early phase II studies were encouraging, subsequent underpowered studies and phase III studies designed primarily with cardiovascular endpoints have discredited the potential of anti-interleukin-1 approaches to treat the subgroup of patients that may benefit from this treatment. In this meta-analysis of 2921 individuals from eight phase I–IV studies, we demonstrate a significant overall HbA1c-lowering effect of interleukin-1 antagonism. Meta-regression analyses demonstrated a significant correlation between baseline C-reactive protein and C-peptide, and HbA1c outcome. The identification of further biomarkers for future clinical trials to define the potential of anti-interleukin-1 therapies in type 2 diabetes is urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaiser AB, Zhang N, Van Der Pluijm W (2018) Global prevalence of type 2 diabetes over the next ten years (2018-2028). Diabetes 67(suppl.1):202–2LB. https://doi.org/10.2337/db18-202-LB

    Article  Google Scholar 

  2. Daousi C, Casson I, Gill G, MacFarlane I, Wilding J, Pinkney J (2006) Prevalence of obesity in type 2 diabetes in secondary care: association with cardiovascular risk factors. Postgrad Med J 82(966):280–284

    Article  CAS  Google Scholar 

  3. Galaviz KI, Narayan KV, Lobelo F, Weber MB (2018) Lifestyle and the prevention of type 2 diabetes: a status report. Am J Lifestyle Med 12(1):4–20

    Article  Google Scholar 

  4. Chrvala CA, Sherr D, Lipman RD (2016) Diabetes self-management education for adults with type 2 diabetes mellitus: a systematic review of the effect on glycemic control. Patient Educ Couns 99(6):926–943

    Article  Google Scholar 

  5. Keidar A (2011) Bariatric surgery for type 2 diabetes reversal: the risks. Diab Care 34(Supplement 2):S361–S266

    Article  Google Scholar 

  6. Gæde P, Oellgaard J, Carstensen B, Rossing P, Lund-Andersen H, Parving H-H, Pedersen O (2016) Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia 59(11):2298–2307

    Article  Google Scholar 

  7. Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383(9922):1068–1083

    Article  CAS  Google Scholar 

  8. Association AD (2019) 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2019. Diabetes Care 42(Supplement 1):S90–S102

    Article  Google Scholar 

  9. Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, Vikman P, Prasad RB, Aly DM, Almgren P (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diab Endocrinol 6(5):361–369

    Article  Google Scholar 

  10. Wang X, Bao W, Liu J, OuYang Y-Y, Wang D, Rong S, Xiao X, Shan Z-L, Zhang Y, Yao P (2013) Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 36(1):166–175

    Article  CAS  Google Scholar 

  11. Donath MY (2014) Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 13(6):465–476

    Article  CAS  Google Scholar 

  12. Goldfine AB, Fonseca V, Jablonski KA, Chen Y-DI, Tipton L, Staten MA, Shoelson SE (2013) Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med 159(1):1–12

    Article  Google Scholar 

  13. Kothari V, Galdo JA, Mathews ST (2016) Hypoglycemic agents and potential anti-inflammatory activity. J Inflamm Res 9:27–38

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mandrup-Poulsen T (2017) Immunometabolism in 2017: metabolism and the inflammasome in health and ageing. Nat Rev Endocrinol 14(2):72–74

    Article  Google Scholar 

  15. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420

    Article  CAS  Google Scholar 

  16. Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA, Donath MY (2002) Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110(6):851–860

    Article  CAS  Google Scholar 

  17. Mandrup-Poulsen T (2010) IAPP boosts islet macrophage IL-1 in type 2 diabetes. Nat Immunol 11(10):881–883

    Article  CAS  Google Scholar 

  18. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY (2007) Interleukin-1–receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356(15):1517–1526

    Article  CAS  Google Scholar 

  19. Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diab Care 32(9):1663–1668

    Article  CAS  Google Scholar 

  20. Mandrup-Poulsen T (2013) Interleukin-1 antagonists for diabetes. Expert Opin Investig Drugs 22(8):965–979

    Article  CAS  Google Scholar 

  21. Huang J, Yang Y, Hu R, Chen L (2018) Anti-interleukin-1 therapy has mild hypoglycaemic effect in type 2 diabetes. Diab Obes Metab 20(4):1024–1028

    Article  CAS  Google Scholar 

  22. Everett BM, Donath MY, Pradhan AD, Thuren T, Pais P, Nicolau JC, Glynn RJ, Libby P, Ridker PM (2018) Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J Am Coll Cardiol 71(21):2392–2401

    Article  CAS  Google Scholar 

  23. Ruscitti P, Alvaro S, Airò P, Battafarano N, Cantarini L, Cantatore FP, Carlino G, D'Abrosca V, Frassi M, Frediani B (2018) Anti-Interleukin-1 treatment in patients with rheumatoid arthritis and type 2 diabetes (TRACK): a multicentre, randomised, open, prospective, controlled, parallel-group trial. Lancet Available at SSRN: https://ssrncom/abstract=3258674. Accssed January 16

  24. Ridker PM, Howard CP, Walter V, Everett B, Libby P, Hensen J, Thuren T (2012) Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation 126(23):2739–2748

    Article  CAS  Google Scholar 

  25. American Diabetes Association (2019) 6. Glycemic targets: standards of medical care in diabetes—2019. Diabetes Care 42(Supplement 1):S61–S70

    Article  Google Scholar 

  26. Noe A, Howard C, Thuren T, Taylor A, Skerjanec A (2014) Pharmacokinetic and pharmacodynamic characteristics of single-dose canakinumab in patients with type 2 diabetes mellitus. Clin Ther 36(11):1625–1637

    Article  CAS  Google Scholar 

  27. Cavelti-Weder C, Babians-Brunner A, Keller C, Stahel MA, Kurz-Levin M, Zayed H, Solinger AM, Mandrup-Poulsen T, Dinarello CA, Donath MY (2012) Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care 35(8):1654–1662

    Article  CAS  Google Scholar 

  28. Choudhury RP, Birks JS, Mani V, Biasiolli L, Robson MD, L'Allier PL, Gingras M-A, Alie N, McLaughlin MA, Basson CT (2016) Arterial effects of canakinumab in patients with atherosclerosis and type 2 diabetes or glucose intolerance. J Am Coll Cardiol 68(16):1769–1780

    Article  CAS  Google Scholar 

  29. Sloan-Lancaster J, Abu-Raddad E, Polzer J, Miller JW, Scherer JC, De Gaetano A, Berg JK, Landschulz WH (2013) Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1β antibody, in patients with type 2 diabetes. Diabetes Care 36(8):2239–2246

    Article  CAS  Google Scholar 

  30. Vickers A (2001) The use of percentage change from baseline as an outcome in a controlled trial is statistically inefficient: a simulation study. BMC Med Res Methodol 1(1):6

    Article  CAS  Google Scholar 

  31. Martinez M, Bartholomew M (2017) What does it “mean”? A review of interpreting and calculating different types of means and standard deviations. Pharmaceutics 9(2):14

    Article  Google Scholar 

  32. Rissanen A, Howard C, Botha J, Thuren T, Investigators G (2012) Effect of anti-IL-1β antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diab Obes Metab 14(12):1088–1096

    Article  CAS  Google Scholar 

  33. Hensen J, Howard C, Walter V, Thuren T (2013) Impact of interleukin-1β antibody (canakinumab) on glycaemic indicators in patients with type 2 diabetes mellitus: results of secondary endpoints from a randomized, placebo-controlled trial. Diab Metab 39(6):524–531

    Article  CAS  Google Scholar 

  34. Howard C, Noe A, Skerjanec A, Holzhauer B, Wernsing M, Ligueros-Saylan M, Thuren T (2014) Safety and tolerability of canakinumab, an IL-1β inhibitor, in type 2 diabetes mellitus patients: a pooled analysis of three randomised double-blind studies. Cardiovasc Diabetol 13(1):94

    Article  Google Scholar 

  35. Higgins JP, Altman DG (2008) Assessing risk of bias in included studies. Cochrane handbook for systematic reviews of interventions: Cochrane book series:187–241

  36. Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2011) Introduction to meta-analysis. John Wiley & Sons

  37. Riley RD, Higgins JP, Deeks JJ (2011) Interpretation of random effects meta-analyses. BMJ 342:d549

    Article  Google Scholar 

  38. IntHout J, Ioannidis JP, Rovers MM, Goeman J (2016) Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open 6(7):e010247

    Article  Google Scholar 

  39. Koefoed M, Larsen CM, Faulenbach MV, Vaag A, Ehses JA, Donath MY, McGuire JN, Pociot F, Mandrup-Poulsen T (2010) Serum proteome pool changes in type 2 diabetic patients treated with anakinra. Clin Proteomics 6(4):153–161

    Article  CAS  Google Scholar 

  40. Li X, Buxbaum JN (2011) Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer's disease? Mol Neurodegener 6(1):79

    Article  CAS  Google Scholar 

  41. Ribel-Madsen R, Friedrichsen M, Vaag A, Poulsen P (2009) Retinol-binding protein 4 in twins: regulatory mechanisms and impact of circulating and tissue expression levels on insulin secretion and action. Diabetes 58:54–60

    Article  CAS  Google Scholar 

  42. Graham TE, Yang Q, Blüher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson P-A, Smith U (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 354(24):2552–2563

    Article  CAS  Google Scholar 

  43. Huang R, Bai X, Li X, Zhao L, Xia M (2018) Retinol binding protein 4 impairs pancreatic beta-cell function, leading to the development of type 2 diabetes. Diabetes 67 (7) (Supplement 1). doi:https://doi.org/10.2337/db18-1826-P

  44. Oram JF, Yokoyama S (1996) Apolipoprotein-mediated removal of cellular cholesterol and phospholipids. J Lipid Res 37(12):2473–2491

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mandrup-Poulsen.

Ethics declarations

Disclosure

The authors declare that they have no conflicts of interest.

Additional information

This article is a contribution to the special issue on Inflammation and Type 2 Diabetes - Guest Editor: Marc Y. Donath

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataria, Y., Ellervik, C. & Mandrup-Poulsen, T. Treatment of type 2 diabetes by targeting interleukin-1: a meta-analysis of 2921 patients. Semin Immunopathol 41, 413–425 (2019). https://doi.org/10.1007/s00281-019-00743-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-019-00743-6

Keywords

Navigation