Skip to main content

Advertisement

Log in

Molecular pathogenesis of viral hemorrhagic fever

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The clinical syndrome referred to as viral hemorrhagic fever (VHF) can be caused by several different families of RNA viruses, including select members of the arenaviruses, bunyaviruses, filoviruses, and flaviviruses. VHF is characterized by malaise, fever, vascular permeability, decreased plasma volume, coagulation abnormalities, and varying degrees of hemorrhage. Study of the filovirus Ebola virus has demonstrated a critical role for suppression of innate antiviral defenses in viral pathogenesis. Additionally, antigen-presenting cells are targets of productive infection and immune dysregulation. Among these cell populations, monocytes and macrophages are proposed to produce damaging inflammatory cytokines, while infected dendritic cells fail to undergo proper maturation, potentially impairing adaptive immunity. Uncontrolled virus replication and accompanying inflammatory responses are thought to promote vascular leakage and coagulopathy. However, the specific molecular pathways that underlie these features of VHF remain poorly understood. The arenavirus Lassa virus and the flavivirus yellow fever virus exhibit similar molecular pathogenesis suggesting common underlying mechanisms. Because non-human primate models that closely mimic VHF are available for Ebola, Lassa, and yellow fever viruses, we propose that comparative molecular studies using these models will yield new insights into the molecular underpinnings of VHF and suggest new therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fenton MB, Davison M, Kunz TH, McCracken GF, Racey PA, Tuttle MD (2006) Linking bats to emerging diseases. Science 311(5764):1098–1099; author reply 1098-1099. doi:10.1126/science.311.5764.1098c

    Article  CAS  PubMed  Google Scholar 

  2. Paessler S, Walker DH (2013) Pathogenesis of the viral hemorrhagic fevers. Annu Rev Pathol 8:411–440. doi:10.1146/annurev-pathol-020712-164041

    Article  CAS  PubMed  Google Scholar 

  3. Schnittler HJ, Feldmann H (2003) Viral hemorrhagic fever—a vascular disease? Thromb Haemost 89(6):967–972. doi:10.1267/THRO03060967

    CAS  PubMed  Google Scholar 

  4. Channabasappa N, Johnson-Welch S, Mittal N De novo cholangiocarcinoma after liver transplantation in a pediatric patient. Pediatr Transplant 14(8):E110–E114. doi:10.1111/j.1399-3046.2009.01220.x

  5. Birmingham K, Kenyon G (2001) Nat Med 7(8):878–878. doi:10.1038/90892

    Article  CAS  PubMed  Google Scholar 

  6. McCormick JB, Webb PA, Krebs JW, Johnson KM, Smith ES (1987) A prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis 155(3):437–444

    Article  CAS  PubMed  Google Scholar 

  7. Vasconcelos PF, Monath TP (2016) Yellow fever remains a potential threat to public health. Vector Borne Zoonotic Dis 16(8):566–567. doi:10.1089/vbz.2016.2031

    Article  PubMed  Google Scholar 

  8. Organization WH (2016) Situation report—Ebola virus disease 10 June 2016.

  9. Kuhn JH, Bao Y, Bavari S, Becker S, Bradfute S, Brauburger K, Rodney Brister J, Bukreyev AA, Cai Y, Chandran K, Davey RA, Dolnik O, Dye JM, Enterlein S, Gonzalez JP, Formenty P, Freiberg AN, Hensley LE, Hoenen T, Honko AN, Ignatyev GM, Jahrling PB, Johnson KM, Klenk HD, Kobinger G, Lackemeyer MG, Leroy EM, Lever MS, Muhlberger E, Netesov SV, Olinger GG, Palacios G, Patterson JL, Paweska JT, Pitt L, Radoshitzky SR, Ryabchikova EI, Saphire EO, Shestopalov AM, Smither SJ, Sullivan NJ, Swanepoel R, Takada A, Towner JS, van der Groen G, Volchkov VE, Volchkova VA, Wahl-Jensen V, Warren TK, Warfield KL, Weidmann M, Nichol ST (2013) Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Arch Virol 159(5):1229–1237. doi:10.1007/s00705-013-1877-2

    PubMed  PubMed Central  Google Scholar 

  10. Feldmann H, Sanchez A, Geisbert TW (2013) Filoviridae: Marburg and Ebola viruses. Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  11. Towner JS, Pourrut X, Albarino CG, Nkogue CN, Bird BH, Grard G, Ksiazek TG, Gonzalez JP, Nichol ST, Leroy EM (2007) Marburg virus infection detected in a common African bat. PLoS One 2(8):e764. doi:10.1371/journal.pone.0000764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Leendertz SA, Gogarten JF, Dux A, Calvignac-Spencer S, Leendertz FH (2015) Assessing the evidence supporting fruit bats as the primary reservoirs for Ebola viruses. EcoHealth 13(1):18–25. doi:10.1007/s10393-015-1053-0

    Article  PubMed  Google Scholar 

  13. Jones ME, Schuh AJ, Amman BR, Sealy TK, Zaki SR, Nichol ST, Towner JS (2015) Experimental inoculation of Egyptian rousette bats (Rousettus aegyptiacus) with viruses of the Ebolavirus and Marburgvirus genera. Viruses 7(7):3420–3442. doi:10.3390/v7072779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kortepeter MG, Bausch DG, Bray M (2011) Basic clinical and laboratory features of filoviral hemorrhagic fever. J Infect Dis 204(Suppl 3):S810–S816. doi:10.1093/infdis/jir299

    Article  PubMed  Google Scholar 

  15. Zaki SR, Goldsmith CS (1999) Pathologic features of filovirus infections in humans. Curr Top Microbiol Immunol 235:97–116

    CAS  PubMed  Google Scholar 

  16. Geisbert TW, Hensley LE, Gibb TR, Steele KE, Jaax NK, Jahrling PB (2000) Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab Investig 80(2):171–186

    Article  CAS  PubMed  Google Scholar 

  17. Martines RB, Ng DL, Greer PW, Rollin PE, Zaki SR (2015) Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses. J Pathol 235(2):153–174. doi:10.1002/path.4456

    Article  CAS  PubMed  Google Scholar 

  18. Baize S, Leroy EM, Georges-Courbot MC, Capron M, Lansoud-Soukate J, Debre P, Fisher-Hoch SP, McCormick JB, Georges AJ (1999) Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat Med 5(4):423–426

    Article  CAS  PubMed  Google Scholar 

  19. Geisbert TW, Hensley LE, Larsen T, Young HA, Reed DS, Geisbert JB, Scott DP, Kagan E, Jahrling PB, Davis KJ (2003) Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 163(6):2347–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dube D, Schornberg KL, Stantchev TS, Bonaparte MI, Delos SE, Bouton AH, Broder CC, White JM (2008) Cell adhesion promotes Ebola virus envelope glycoprotein-mediated binding and infection. J Virol 82(14):7238–7242. doi:10.1128/JVI.00425-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reed DS, Hensley LE, Geisbert JB, Jahrling PB, Geisbert TW (2004) Depletion of peripheral blood T lymphocytes and NK cells during the course of Ebola hemorrhagic fever in cynomolgus macaques. Viral Immunol 17(3):390–400

    Article  CAS  PubMed  Google Scholar 

  22. Hensley LE, Young HA, Jahrling PB, Geisbert TW (2002) Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily. Immunol Lett 80(3):169–179

    Article  CAS  PubMed  Google Scholar 

  23. Wauquier N, Becquart P, Padilla C, Baize S, Leroy EM (2010) Human fatal zaire ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis. PLoS Negl Trop Dis 4(10):e837. doi:10.1371/journal.pntd.0000837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bosio CM, Aman MJ, Grogan C, Hogan R, Ruthel G, Negley D, Mohamadzadeh M, Bavari S, Schmaljohn A (2003) Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J Infect Dis 188(11):1630–1638

    Article  CAS  PubMed  Google Scholar 

  25. Mahanty S, Hutchinson K, Agarwal S, McRae M, Rollin PE, Pulendran B (2003) Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J Immunol 170(6):2797–2801

    Article  CAS  PubMed  Google Scholar 

  26. Sanchez A, Lukwiya M, Bausch D, Mahanty S, Sanchez AJ, Wagoner KD, Rollin PE (2004) Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J Virol 78(19):10370–10377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baize S, Leroy EM, Georges AJ, Georges-Courbot MC, Capron M, Bedjabaga I, Lansoud-Soukate J, Mavoungou E (2002) Inflammatory responses in Ebola virus-infected patients. Clin Exp Immunol 128(1):163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yaddanapudi K, Palacios G, Towner JS, Chen I, Sariol CA, Nichol ST, Lipkin WI (2006) Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J 20(14):2519–2530

    Article  CAS  PubMed  Google Scholar 

  29. Ebihara H, Rockx B, Marzi A, Feldmann F, Haddock E, Brining D, LaCasse RA, Gardner D, Feldmann H (2011) Host response dynamics following lethal infection of rhesus macaques with Zaire ebolavirus. J Infect Dis 204(Suppl 3):S991–S999. doi:10.1093/infdis/jir336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hutchinson KL, Rollin PE (2007) Cytokine and chemokine expression in humans infected with Sudan Ebola virus. J Infect Dis 196(Suppl 2):S357–S363

    Article  CAS  PubMed  Google Scholar 

  31. McElroy AK, Harmon JR, Flietstra TD, Campbell S, Mehta AK, Kraft CS, Lyon MG, Varkey JB, Ribner BS, Kratochvil CJ, Iwen PC, Smith PW, Ahmed R, Nichol ST, Spiropoulou CF (2016) Kinetic analysis of biomarkers in a cohort of US patients with Ebola virus disease. Clin Infect Dis 63(4):460–467. doi:10.1093/cid/ciw334

    Article  PubMed  Google Scholar 

  32. Villinger F, Rollin PE, Brar SS, Chikkala NF, Winter J, Sundstrom JB, Zaki SR, Swanepoel R, Ansari AA, Peters CJ (1999) Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J Infect Dis 179(Suppl 1):S188–S191

    Article  CAS  PubMed  Google Scholar 

  33. Gupta M, Mahanty S, Ahmed R, Rollin PE (2001) Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced IFN-alpha in vitro. Virology 284(1):20–25

    Article  CAS  PubMed  Google Scholar 

  34. Stroher U, West E, Bugany H, Klenk HD, Schnittler HJ, Feldmann H (2001) Infection and activation of monocytes by Marburg and Ebola viruses. J Virol 75(22):11025–11033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rollin PE, Bausch DG, Sanchez A (2007) Blood chemistry measurements and D-dimer levels associated with fatal and nonfatal outcomes in humans infected with Sudan Ebola virus. J Infect Dis 196(Suppl 2):S364–S371. doi:10.1086/520613

    Article  CAS  PubMed  Google Scholar 

  36. Isaacson MSP, Courteille G (1976) Clinical aspects of Ebola virus disease at the Ngaliema hospital, Kinshasa, Zaire, 1976. In: Ebola Virus Haemorrhagic Fever. Elsevier/North Holland Biomedical Press, New York

  37. Organization WH (1978) Ebola haemorrhagic fever in Sudan, 1976. Report of a WHO/International Study Team. Bull World Health Organ 58:247–270

    Google Scholar 

  38. Geisbert TW, Young HA, Jahrling PB, Davis KJ, Larsen T, Kagan E, Hensley LE (2003) Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. Am J Pathol 163(6):2371–2382. doi:10.1016/S0002-9440(10)63592-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geisbert TW, Hensley LE, Jahrling PB, Larsen T, Geisbert JB, Paragas J, Young HA, Fredeking TM, Rote WE, Vlasuk GP (2003) Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 362(9400):1953–1958

    Article  CAS  PubMed  Google Scholar 

  40. Gibb TR, Bray M, Geisbert TW, Steele KE, Kell WM, Davis KJ, Jaax NK (2001) Pathogenesis of experimental Ebola Zaire virus infection in BALB/c mice. J Comp Pathol 125(4):233–242

    Article  CAS  PubMed  Google Scholar 

  41. Hensley LE, Alves DA, Geisbert JB, Fritz EA, Reed C, Larsen T, Geisbert TW (2011) Pathogenesis of Marburg hemorrhagic fever in cynomolgus macaques. J Infect Dis 204(Suppl 3):S1021–S1031. doi:10.1093/infdis/jir339

    Article  CAS  PubMed  Google Scholar 

  42. Olejnik J, Forero A, Deflube LR, Hume AJ, Manhart WA, Nishida A, Marzi A, Katze MG, Ebihara H, Rasmussen AL, Muhlberger E (2017) Ebolaviruses associated with differential pathogenicity induce distinct host responses in human macrophages. J Virol. doi:10.1128/JVI.00179-17

  43. Lubaki NM, Ilinykh P, Pietzsch C, Tigabu B, Freiberg AN, Koup RA, Bukreyev A (2013) The lack of maturation of Ebola virus-infected dendritic cells results from the cooperative effect of at least two viral domains. J Virol 87(13):7471–7485. doi:10.1128/JVI.03316-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ksiazek TG, Rollin PE, Williams AJ, Bressler DS, Martin ML, Swanepoel R, Burt FJ, Leman PA, Khan AS, Rowe AK, Mukunu R, Sanchez A, Peters CJ (1999) Clinical virology of Ebola hemorrhagic fever (EHF): virus, virus antigen, and IgG and IgM antibody findings among EHF patients in Kikwit, Democratic Republic of the Congo, 1995. J Infect Dis 179(Suppl 1):S177–S187. doi:10.1086/514321

    Article  PubMed  Google Scholar 

  45. McElroy AK, Akondy RS, Davis CW, Ellebedy AH, Mehta AK, Kraft CS, Lyon GM, Ribner BS, Varkey J, Sidney J, Sette A, Campbell S, Stroher U, Damon I, Nichol ST, Spiropoulou CF, Ahmed R (2015) Human Ebola virus infection results in substantial immune activation. Proc Natl Acad Sci U S A 112(15):4719–4724. doi:10.1073/pnas.1502619112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545. doi:10.1146/annurev-immunol-032713-120231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schoggins JW (2014) Interferon-stimulated genes: roles in viral pathogenesis. Curr Opin Virol 6:40–46. doi:10.1016/j.coviro.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  48. Cardenas WB, Loo YM, Gale M Jr, Hartman AL, Kimberlin CR, Martinez-Sobrido L, Saphire EO, Basler CF (2006) Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol 80(11):5168–5178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muhlberger E, Lotfering B, Klenk HD, Becker S (1998) Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72(11):8756–8764

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Muhlberger E, Weik M, Volchkov VE, Klenk HD, Becker S (1999) Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol 73(3):2333–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Basler CF, Wang X, Muhlberger E, Volchkov V, Paragas J, Klenk HD, Garcia-Sastre A, Palese P (2000) The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci U S A 97(22):12289–12294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prins KC, Delpeut S, Leung DW, Reynard O, Volchkova VA, Reid SP, Ramanan P, Cardenas WB, Amarasinghe GK, Volchkov VE, Basler CF (2010) Mutations abrogating VP35 interaction with double-stranded RNA render Ebola virus avirulent in guinea pigs. J Virol 84(6):3004–3015. doi:10.1128/JVI.02459-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hartman AL, Bird BH, Towner JS, Antoniadou ZA, Zaki SR, Nichol ST (2008) Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of ebola virus. J Virol 82(6):2699–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leung DW, Amarasinghe GK (2012) Structural insights into RNA recognition and activation of RIG-I-like receptors. Curr Opin Struct Biol 22(3):297–303. doi:10.1016/j.sbi.2012.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Prins KC, Cardenas WB, Basler CF (2009) Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1. J Virol 83(7):3069–3077. doi:10.1128/JVI.01875-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chang TH, Kubota T, Matsuoka M, Jones S, Bradfute SB, Bray M, Ozato K (2009) Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS Pathog 5(6):e1000493. doi:10.1371/journal.ppat.1000493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Leung DW, Prins KC, Borek DM, Farahbakhsh M, Tufariello JM, Ramanan P, Nix JC, Helgeson LA, Otwinowski Z, Honzatko RB, Basler CF, Amarasinghe GK (2010) Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nat Struct Mol Biol 17(2):165–172. doi:10.1038/nsmb.1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hartman AL, Ling L, Nichol ST, Hibberd ML (2008) Whole genome expression profiling reveals that inhibition of host innate immune response pathways by Ebola virus can be reversed by a single amino acid change in the VP35 protein. J Virol 82:5348–5358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Luthra P, Ramanan P, Mire CE, Weisend C, Tsuda Y, Yen B, Liu G, Leung DW, Geisbert TW, Ebihara H, Amarasinghe GK, Basler CF (2013) Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome. Cell Host Microbe 14(1):74–84. doi:10.1016/j.chom.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  60. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258

    Article  CAS  PubMed  Google Scholar 

  61. Yen B, Mulder LC, Martinez O, Basler CF (2014) Molecular basis for ebolavirus VP35 suppression of human dendritic cell maturation. J Virol 88(21):12500–12510. doi:10.1128/JVI.02163-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yen BC, Basler CF (2016) Effects of filovirus interferon antagonists on responses of human monocyte-derived dendritic cells to RNA virus infection. J Virol 90(10):5108–5118. doi:10.1128/JVI.00191-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jin H, Yan Z, Prabhakar BS, Feng Z, Ma Y, Verpooten D, Ganesh B, He B (2010) The VP35 protein of Ebola virus impairs dendritic cell maturation induced by virus and lipopolysaccharide. J Gen Virol 91(Pt 2):352–361. doi:10.1099/vir.0.017343-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Albarino CG, Wiggleton Guerrero L, Spengler JR, Uebelhoer LS, Chakrabarti AK, Nichol ST, Towner JS (2015) Recombinant Marburg viruses containing mutations in the IID region of VP35 prevent inhibition of host immune responses. Virology 476:85–91. doi:10.1016/j.virol.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  65. Edwards MR, Liu G, Mire CE, Sureshchandra S, Luthra P, Yen B, Shabman RS, Leung DW, Messaoudi I, Geisbert TW, Amarasinghe GK, Basler CF (2016) Differential regulation of interferon responses by Ebola and Marburg virus VP35 proteins. Cell Rep 14(7):1632–1640. doi:10.1016/j.celrep.2016.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Organization WH (2012) Marburg haemorrhagic fever. http://www.who.int/mediacentre/factsheets/fs_marburg/en/

  67. McBride KM, Reich NC (2003) The ins and outs of STAT1 nuclear transport. Sci STKE 2003(195):RE13. doi:10.1126/stke.2003.195.re13

    PubMed  Google Scholar 

  68. Mateo M, Carbonnelle C, Reynard O, Kolesnikova L, Nemirov K, Page A, Volchkova VA, Volchkov VE (2011) VP24 is a molecular determinant of Ebola virus virulence in guinea pigs. J Infect Dis 204(Suppl 3):S1011–S1020. doi:10.1093/infdis/jir338

    Article  CAS  PubMed  Google Scholar 

  69. Reid SP, Leung LW, Hartman AL, Martinez O, Shaw ML, Carbonnelle C, Volchkov VE, Nichol ST, Basler CF (2006) Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J Virol 80(11):5156–5167. doi:10.1128/JVI.02349-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reid SP, Valmas C, Martinez O, Sanchez FM, Basler CF (2007) Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J Virol 81(24):13469–13477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu W, Edwards MR, Borek DM, Feagins AR, Mittal A, Alinger JB, Berry KN, Yen B, Hamilton J, Brett TJ, Pappu RV, Leung DW, Basler CF, Amarasinghe GK (2014) Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe 16(2):187–200. doi:10.1016/j.chom.2014.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Valmas C, Grosch MN, Schumann M, Olejnik J, Martinez O, Best SM, Krahling V, Basler CF, Muhlberger E (2010) Marburg virus evades interferon responses by a mechanism distinct from ebola virus. PLoS Pathog 6(1):e1000721. doi:10.1371/journal.ppat.1000721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Valmas C, Basler CF (2011) Marburg virus VP40 antagonizes interferon signaling in a species-specific manner. J Virol 85(9):4309–4317. doi:10.1128/JVI.02575-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schumann M, Gantke T, Muhlberger E (2009) Ebola virus VP35 antagonizes PKR activity through its C-terminal interferon inhibitory domain. J Virol 83(17):8993–8997. doi:10.1128/JVI.00523-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kaletsky RL, Francica JR, Agrawal-Gamse C, Bates P (2009) Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc Natl Acad Sci U S A 106(8):2886–2891. doi:10.1073/pnas.0811014106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Francica JR, Varela-Rohena A, Medvec A, Plesa G, Riley JL, Bates P (2010) Steric shielding of surface epitopes and impaired immune recognition induced by the ebola virus glycoprotein. PLoS Pathog 6(9):e1001098. doi:10.1371/journal.ppat.1001098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Martinez O, Johnson JC, Honko A, Yen B, Shabman RS, Hensley LE, Olinger GG, Basler CF (2013) Ebola virus exploits a monocyte differentiation program to promote its entry. J Virol. doi:10.1128/JVI.02695-12

  78. Wahl-Jensen V, Kurz SK, Hazelton PR, Schnittler HJ, Stroher U, Burton DR, Feldmann H (2005) Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages. J Virol 79(4):2413–2419. doi:10.1128/JVI.79.4.2413-2419.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Okumura A, Pitha PM, Yoshimura A, Harty RN (2010) Interaction between Ebola virus glycoprotein and host toll-like receptor 4 leads to induction of proinflammatory cytokines and SOCS1. J Virol 84(1):27–33. doi:10.1128/JVI.01462-09

    Article  CAS  PubMed  Google Scholar 

  80. Buchmeier MJ, de la Torre JC, Peters CJ (2013) Arenaviridae. Fields Virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  81. Winn WC Jr, Walker DH (1975) The pathology of human Lassa fever. Bull World Health Organ 52(4–6):535–545

    PubMed  PubMed Central  Google Scholar 

  82. Baize S, Kaplon J, Faure C, Pannetier D, Georges-Courbot MC, Deubel V (2004) Lassa virus infection of human dendritic cells and macrophages is productive but fails to activate cells. J Immunol 172(5):2861–2869

    Article  CAS  PubMed  Google Scholar 

  83. Hensley LE, Smith MA, Geisbert JB, Fritz EA, Daddario-DiCaprio KM, Larsen T, Geisbert TW (2011) Pathogenesis of Lassa fever in cynomolgus macaques. Virol J 8:205. doi:10.1186/1743-422X-8-205

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pannetier D, Reynard S, Russier M, Journeaux A, Tordo N, Deubel V, Baize S (2011) Human dendritic cells infected with the nonpathogenic Mopeia virus induce stronger T-cell responses than those infected with Lassa virus. J Virol 85(16):8293–8306. doi:10.1128/JVI.02120-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Qi X, Lan S, Wang W, Schelde LM, Dong H, Wallat GD, Ly H, Liang Y, Dong C (2010) Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature 468(7325):779–783. doi:10.1038/nature09605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hastie KM, Kimberlin CR, Zandonatti MA, MacRae IJ, Saphire EO (2011) Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. Proc Natl Acad Sci U S A 108(6):2396–2401. doi:10.1073/pnas.1016404108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reynard S, Russier M, Fizet A, Carnec X, Baize S (2014) Exonuclease domain of the Lassa virus nucleoprotein is critical to avoid RIG-I signaling and to inhibit the innate immune response. J Virol 88(23):13923–13927. doi:10.1128/JVI.01923-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Russier M, Reynard S, Carnec X, Baize S (2014) The exonuclease domain of Lassa virus nucleoprotein is involved in antigen-presenting-cell-mediated NK cell responses. J Virol 88(23):13811–13820. doi:10.1128/JVI.01908-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Xing J, Ly H, Liang Y (2015) The Z proteins of pathogenic but not nonpathogenic arenaviruses inhibit RIG-I-like receptor-dependent interferon production. J Virol 89(5):2944–2955. doi:10.1128/JVI.03349-14

    Article  PubMed  CAS  Google Scholar 

  90. Fan L, Briese T, Lipkin WI (2010) Z proteins of New World arenaviruses bind RIG-I and interfere with type I interferon induction. J Virol 84(4):1785–1791. doi:10.1128/JVI.01362-09

    Article  CAS  PubMed  Google Scholar 

  91. Monath TP, Vasconcelos PF (2015) Yellow fever. J Clin Virol 64:160–173. doi:10.1016/j.jcv.2014.08.030

    Article  PubMed  Google Scholar 

  92. Monath TP (2005) Yellow fever vaccine. Expert Rev Vaccines 4(4):553–574. doi:10.1586/14760584.4.4.553

    Article  CAS  PubMed  Google Scholar 

  93. Organization WH (2017) Yellow fever—Brazil. http://www.who.int/csr/don/13-january-2017-yellow-fever-brazil/en/

  94. Monath TP, Barrett AD (2003) Pathogenesis and pathophysiology of yellow fever. Adv Virus Res 60:343–395

    Article  PubMed  Google Scholar 

  95. Monath TP (2008) Treatment of yellow fever. Antivir Res 78(1):116–124. doi:10.1016/j.antiviral.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  96. Monath TP (2001) Yellow fever: an update. Lancet Infect Dis 1(1):11–20. doi:10.1016/S1473-3099(01)00016-0

    Article  CAS  PubMed  Google Scholar 

  97. Munoz-Jordan JL, Laurent-Rolle M, Ashour J, Martinez-Sobrido L, Ashok M, Lipkin WI, Garcia-Sastre A (2005) Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 79(13):8004–8013. doi:10.1128/JVI.79.13.8004-8013.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Laurent-Rolle M, Morrison J, Rajsbaum R, Macleod JM, Pisanelli G, Pham A, Ayllon J, Miorin L, Martinez-Romero C, tenOever BR, Garcia-Sastre A (2014) The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon. Cell Host Microbe 16(3):314–327. doi:10.1016/j.chom.2014.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fernandez-Garcia MD, Meertens L, Chazal M, Hafirassou ML, Dejarnac O, Zamborlini A, Despres P, Sauvonnet N, Arenzana-Seisdedos F, Jouvenet N, Amara A (2016) Vaccine and wild-type strains of yellow fever virus engage distinct entry mechanisms and differentially stimulate antiviral immune responses. MBio 7(1):e01956–e01915. doi:10.1128/mBio.01956-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stephen EL, Sammons ML, Pannier WL, Baron S, Spertzel RO, Levy HB (1977) Effect of a nuclease-resistant derivative of polyriboinosinic-polyribocytidylic acid complex on yellow fever in rhesus monkeys (Macaca mulatta). J Infect Dis 136(1):122–126

    Article  CAS  PubMed  Google Scholar 

  101. Arroyo JI, Apperson SA, Cropp CB, Marafino BJ Jr, Monath TP, Tesh RB, Shope RE, Garcia-Blanco MA (1988) Effect of human gamma interferon on yellow fever virus infection. AmJTrop Med Hyg 38(3):647–650

    CAS  Google Scholar 

  102. Monath TP, Brinker KR, Chandler FW, Kemp GE, Cropp CB (1981) Pathophysiologic correlations in a rhesus monkey model of yellow fever with special observations on the acute necrosis of B cell areas of lymphoid tissues. AmJTrop Med Hyg 30(2):431–443

    Article  CAS  Google Scholar 

  103. Engelmann F, Josset L, Girke T, Park B, Barron A, Dewane J, Hammarlund E, Lewis A, Axthelm MK, Slifka MK, Messaoudi I (2014) Pathophysiologic and transcriptomic analyses of viscerotropic yellow fever in a rhesus macaque model. PLoS Negl Trop Dis 8(11):e3295. doi:10.1371/journal.pntd.0003295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. ter Meulen J, Sakho M, Koulemou K, Magassouba N, Bah A, Preiser W, Daffis S, Klewitz C, Bae HG, Niedrig M, Zeller H, Heinzel-Gutenbrunner M, Koivogui L, Kaufmann A (2004) Activation of the cytokine network and unfavorable outcome in patients with yellow fever. J Infect Dis 190(10):1821–1827. doi:10.1086/425016

    Article  PubMed  Google Scholar 

  105. Kuhn JH, Clawson AN, Rodoshitzky SR, Wahl-Jensen V, Bavari S, Jahrling PB (2014) Viral hemorrhagic fevers: history and definitions. In: Singh SK, Ruzek D (eds) Viral hemorrhagic fevers. CRC Press, Boca Raton

    Google Scholar 

  106. Feldmann H, Bugany H, Mahner F, Klenk HD, Drenckhahn D, Schnittler HJ (1996) Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages. J Virol 70(4):2208–2214

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Geisbert TW, Hensley LE (2004) Ebola virus: new insights into disease aetiopathology and possible therapeutic interventions. Expert Rev Mol Med 6(20):1–24

    Article  PubMed  Google Scholar 

  108. Geisbert TW, Young HA, Jahrling PB, Davis KJ, Kagan E, Hensley LE (2003) Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J Infect Dis 188(11):1618–1629

    Article  CAS  PubMed  Google Scholar 

  109. Feldmann H (2010) Are we any closer to combating Ebola infections? Lancet 375(9729):1850–1852. doi:10.1016/S0140-6736(10)60597-1

    Article  PubMed  PubMed Central  Google Scholar 

  110. Baize S, Leroy EM, Mavoungou E, Fisher-Hoch SP (2000) Apoptosis in fatal Ebola infection. Does the virus toll the bell for immune system? Apoptosis 5(1):5–7

    Article  CAS  PubMed  Google Scholar 

  111. Bradfute SB, Braun DR, Shamblin JD, Geisbert JB, Paragas J, Garrison A, Hensley LE, Geisbert TW (2007) Lymphocyte death in a mouse model of Ebola virus infection. J Infect Dis 196(Suppl 2):S296–S304. doi:10.1086/520602

    Article  PubMed  Google Scholar 

  112. Bradfute SB, Warfield KL, Bavari S (2008) Functional CD8+ T cell responses in lethal Ebola virus infection. J Immunol 180(6):4058–4066

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher F. Basler.

Additional information

This article is a contribution to the special issue on Cytokine Storm in Infectious Diseases -- Guest Editor: John Teijaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basler, C.F. Molecular pathogenesis of viral hemorrhagic fever. Semin Immunopathol 39, 551–561 (2017). https://doi.org/10.1007/s00281-017-0637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-017-0637-x

Keywords

Navigation