Skip to main content

Advertisement

Log in

B cells in glomerulonephritis: focus on lupus nephritis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The production of pathogenic antibody has been traditionally viewed as the principle contribution of B cells to the pathogenesis of immune-mediated glomerulonephritis. However, it is increasingly appreciated that B cells play a much broader role in such diseases, functioning as antigen-presenting cells, regulators of T cells, dendritic cells, and macrophages and orchestrators of local lymphatic expansion. In this review, we provide an overview of basic B cell biology and consider the evidence implicating B cells in one of the archetypal immune-mediated glomerulonephritides, lupus nephritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SLE:

systemic lupus erythematosus

IC:

immune complex

DC:

dendritic cell

GN:

glomerulonephritis

APC:

antigen presenting cell

ANCA:

anti-neutrophil cytoplasmic antibody

BCR:

B cell receptor

ADCC:

antibody-dependent cell-mediated cytotoxicity

TLR:

Toll-like receptor

IL:

interleukin

ANA:

anti-nuclear antibody

dsDNA:

double stranded DNA

BAFF:

B cell activity factor

HNA:

human neutrophil antigen

References

  1. Edelman GM (1973) Antibody structure and molecular immunology. Science 180:830–840

    PubMed  CAS  Google Scholar 

  2. Smith KGC, Light A, O’Reilly LA, Ang SM, Strasser A, Tarlinton DM (2000) bcl-2 transgene expression inhibits apoptosis in the germinal center and reveals differences in the selection of memory B cells and bone marrow antibody-forming cells. J Exp Med 191:475–484

    PubMed  CAS  Google Scholar 

  3. Goodnow CC, Cyster JG, Hartley SB, Bell SE, Cooke MP, Healy JI, Akkaraju S, Rathmell JC, Pogue SL, Shokat KP (1995) Self-tolerance checkpoints in B lymphocyte development. Adv Immunol 59:279–368

    Google Scholar 

  4. Hardy RR, Hayakawa K (2001) B cell development pathways. Annu Rev Immunol 19:595–621

    PubMed  CAS  Google Scholar 

  5. Shlomchik MJ, Craft JE, Mamula MJ (2001) From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol 1:147–153

    PubMed  CAS  Google Scholar 

  6. Okada T, Miller MJ, Parker I, Krummel MF, Neighbors M, Hartley SB, O’Garra A, Cahalan MD, Cyster JG (2005) Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol 3:e150

    PubMed  Google Scholar 

  7. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581

    PubMed  CAS  Google Scholar 

  8. Parker DC (1993) T cell-dependent B cell activation. Annu Rev Immunol 11:331–360

    PubMed  CAS  Google Scholar 

  9. Foy TM, Page DM, Waldschmidt TJ, Schoneveld A, Laman JD, Masters SR, Tygrett L, Ledbetter JA, Aruffo A, Claassen E et al. (1995) An essential role for gp39, the ligand for CD40, in thymic selection. J Exp Med 182:1377–1388

    PubMed  CAS  Google Scholar 

  10. Tarlinton DM, Smith KGC (2000) Dissecting affinity maturation: a model explaining selection of antibody-forming cells and memory B cells in the germinal centre. Immunol Today 21:436–441

    PubMed  CAS  Google Scholar 

  11. Tarlinton DM, Smith KG (1997) Apoptosis and the B cell response to antigen. Int Rev Immunol 15:53–71

    PubMed  CAS  Google Scholar 

  12. Ravetch JV, Kinet JP (1991) Fc receptors. Annu Rev Immunol 9:457–492

    PubMed  CAS  Google Scholar 

  13. Nimmerjahn F, Ravetch JV (2006) Fcgamma receptors: old friends and new family members. Immunity 24:19–28

    PubMed  CAS  Google Scholar 

  14. Tomlinson S (1993) Complement defense mechanisms. Curr Opin Immunol 5:83–89

    PubMed  CAS  Google Scholar 

  15. Chen L (1998) Immunological ignorance of silent antigens as an explanation of tumor evasion. Immunol Today 19:27–30

    PubMed  CAS  Google Scholar 

  16. Goodnow CC (1997) Balancing immunity, autoimmunity, and self-tolerance. Ann N Y Acad Sci 815:55–66

    PubMed  CAS  Google Scholar 

  17. Nossal GJ, Pike BL (1980) Clonal anergy: persistence in tolerant mice of antigen-binding B lymphocytes incapable of responding to antigen or mitogen. Proc Natl Acad Sci USA 77:1602–1606

    PubMed  CAS  Google Scholar 

  18. Fulcher DA, Basten A (1997) B-cell activation versus tolerance—the central role of immunoglobulin receptor engagement and T-cell help. Int Rev Immunol 15:33–52

    PubMed  CAS  Google Scholar 

  19. Goodnow CC (1996) Balancing immunity and tolerance: deleting and tuning lymphocyte repertoires. Proc Natl Acad Sci USA 93:2264–2271

    PubMed  CAS  Google Scholar 

  20. Shokat KM, Goodnow CC (1995) Antigen-induced B-cell death and elimination during germinal-centre immune responses. Nature 375:334–338

    PubMed  CAS  Google Scholar 

  21. Pulendran B, Kannourakis G, Nouri S, Smith KGC, Nossal GJV (1995) Soluble antigen can cause enhanced apoptosis of germinal-centre B cells. Nature 375:331–334

    PubMed  CAS  Google Scholar 

  22. Pritchard NR, Smith KG (2003) B cell inhibitory receptors and autoimmunity. Immunology 108:263–273

    PubMed  CAS  Google Scholar 

  23. Xiang Z, Cutler AJ, Brownlie RJ, Fairfax K, Lawlor KE, Severinson E, Walker EU, Manz RA, Tarlinton DM, Smith KG (2007) FcgammaRIIb controls bone marrow plasma cell persistence and apoptosis. Nat Immunol 8:419–429

    PubMed  CAS  Google Scholar 

  24. Kotzin BL (1996) Systemic lupus erythematosus. Cell 85:303–306

    PubMed  CAS  Google Scholar 

  25. Winfield JB, Faiferman I, Koffler D (1977) Avidity of anti-DNA antibodies in serum and IgG glomerular eluates from patients with systemic lupus erythematosus. Association of high avidity antinative DNA antibody with glomerulonephritis. J Clin Invest 59:90–96

    PubMed  CAS  Google Scholar 

  26. Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science 228:1440–1443

    PubMed  CAS  Google Scholar 

  27. Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–442

    PubMed  CAS  Google Scholar 

  28. Strasser A, Whittingham S, Vaux DL, Bath ML, Adams JM, Cory S, Harris AW (1991) Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc Natl Acad Sci USA 88:8661–8665

    PubMed  CAS  Google Scholar 

  29. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    PubMed  CAS  Google Scholar 

  30. Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456

    PubMed  CAS  Google Scholar 

  31. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81:935–946

    PubMed  CAS  Google Scholar 

  32. Bossu P, Singer GG, Andres P, Ettinger R, Marshak-Rothstein A, Abbas AK (1993) Mature CD4+ T lymphocytes from MRL/lpr mice are resistant to receptor-mediated tolerance and apoptosis. J Immunol 151:7233–7239

    PubMed  CAS  Google Scholar 

  33. Russell JH, Wang R (1993) Autoimmune gld mutation uncouples suicide and cytokine/proliferation pathways in activated, mature T cells. Eur J Immunol 23:2379–2382

    PubMed  CAS  Google Scholar 

  34. Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP (1999) Impaired Fas response and autoimmunity in Pten+/− mice. Science 285:2122–2125

    PubMed  Google Scholar 

  35. Pearse RN, Kawabe T, Bolland S, Guinamard R, Kurosaki T, Ravetch JV (1999) SHIP recruitment attenuates Fc gamma RIIB-induced B cell apoptosis. Immunity 10:753–760

    PubMed  CAS  Google Scholar 

  36. Fukuyama H, Nimmerjahn F, Ravetch JV (2005) The inhibitory Fcgamma receptor modulates autoimmunity by limiting the accumulation of immunoglobulin G+ anti-DNA plasma cells. Nat Immunol 6:99–106

    PubMed  CAS  Google Scholar 

  37. Brauweiler AM, Cambier JC (2004) Autonomous SHIP-dependent FcgammaR signaling in pre-B cells leads to inhibition of cell migration and induction of cell death. Immunol Lett 92:75–81

    PubMed  CAS  Google Scholar 

  38. Kato I, Takai T, Kudo A (2002) The pre-B cell receptor signaling for apoptosis is negatively regulated by Fc gamma RIIB. J Immunol 168:629–634

    PubMed  CAS  Google Scholar 

  39. Kumar KR, Li L, Yan M, Bhaskarabhatla M, Mobley AB, Nguyen C, Mooney JM, Schatzle JD, Wakeland EK, Mohan C (2006) Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science 312:1665–1669

    PubMed  CAS  Google Scholar 

  40. Vaishnaw AK, Toubi E, Ohsako S, Drappa J, Buys S, Estrada J, Sitarz A, Zemel L, Chu JL, Elkon KB (1999) The spectrum of apoptotic defects and clinical manifestations, including systemic lupus erythematosus, in humans with CD95 (Fas/APO-1) mutations. Arthritis Rheum 42:1833–1842

    PubMed  CAS  Google Scholar 

  41. Courtney PA, Crockard AD, Williamson K, Irvine AE, Kennedy RJ, Bell AL (1999) Increased apoptotic peripheral blood neutrophils in systemic lupus erythematosus: relations with disease activity, antibodies to double stranded DNA, and neutropenia. Ann Rheum Dis 58:309–314

    Article  PubMed  CAS  Google Scholar 

  42. Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 179:1317–1330

    PubMed  CAS  Google Scholar 

  43. Utz PJ, Anderson P (1998) Posttranslational protein modifications, apoptosis, and the bypass of tolerance to autoantigens. Arthritis Rheum 41:1152–1160

    PubMed  CAS  Google Scholar 

  44. Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2:965–975

    PubMed  CAS  Google Scholar 

  45. Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, Earp HS, Matsushima GK (2001) Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411:207–211

    PubMed  CAS  Google Scholar 

  46. D’Agnillo P, Levine JS, Subang R, Rauch J (2003) Prothrombin binds to the surface of apoptotic, but not viable, cells and serves as a target of lupus anticoagulant autoantibodies. J Immunol 170:3408–3422

    PubMed  CAS  Google Scholar 

  47. Mevorach D, Zhou JL, Song X, Elkon KB (1998) Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med 188:387–392

    PubMed  CAS  Google Scholar 

  48. Shoshan Y, Shapira I, Toubi E, Frolkis I, Yaron M, Mevorach D (2001) Accelerated Fas-mediated apoptosis of monocytes and maturing macrophages from patients with systemic lupus erythematosus: relevance to in vitro impairment of interaction with iC3b-opsonized apoptotic cells. J Immunol 167:5963–5969

    PubMed  CAS  Google Scholar 

  49. Ren Y, Tang J, Mok MY, Chan AW, Wu A, Lau CS (2003) Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 48:2888–2897

    PubMed  Google Scholar 

  50. Potter PK, Cortes-Hernandez J, Quartier P, Botto M, Walport MJ (2003) Lupus-prone mice have an abnormal response to thioglycolate and an impaired clearance of apoptotic cells. J Immunol 170:3223–3232

    PubMed  CAS  Google Scholar 

  51. Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19:56–59

    PubMed  CAS  Google Scholar 

  52. Bygrave AE, Rose KL, Cortes-Hernandez J, Warren J, Rigby RJ, Cook HT, Walport MJ, Vyse TJ, Botto M (2004) Spontaneous autoimmunity in 129 and C57BL/6 mice-implications for autoimmunity described in gene-targeted mice. PLoS Biol 2:E243

    PubMed  Google Scholar 

  53. Slingsby JH, Norsworthy P, Pearce G, Vaishnaw AK, Issler H, Morley BJ, Walport MJ (1996) Homozygous hereditary C1q deficiency and systemic lupus erythematosus. A new family and the molecular basis of C1q deficiency in three families. Arthritis Rheum 39:663–670

    PubMed  CAS  Google Scholar 

  54. Chen Z, Koralov SB, Kelsoe G (2000) Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2. J Exp Med 192:1339–1352

    PubMed  CAS  Google Scholar 

  55. Paul E, Carroll MC (1999) SAP-less chromatin triggers systemic lupus erythematosus. Nat Med 5:607–608

    PubMed  CAS  Google Scholar 

  56. Cohen PL, Caricchio R, Abraham V, Camenisch TD, Jennette JC, Roubey RA, Earp HS, Matsushima G, Reap EA (2002) Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 196:135–140

    PubMed  CAS  Google Scholar 

  57. Yasutomo K, Horiuchi T, Kagami S, Tsukamoto H, Hashimura C, Urushihara M, Kuroda Y (2001) Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet 28:313–314

    PubMed  CAS  Google Scholar 

  58. Takai T (2002) Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2:580–592

    PubMed  CAS  Google Scholar 

  59. Jiang Y, Hirose S, Abe M, Sanokawa-Akakura R, Ohtsuji M, Mi X, Li N, Xiu Y, Zhang D, Shirai J, Hamano Y, Fujii H, Shirai T (2000) Polymorphisms in IgG Fc receptor IIB regulatory regions associated with autoimmune susceptibility. Immunogenetics 51:429–435

    PubMed  CAS  Google Scholar 

  60. Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV (1996) Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature 379:346–349

    PubMed  CAS  Google Scholar 

  61. Kagari T, Tanaka D, Doi H, Shimozato T (2003) Essential role of Fc gamma receptors in anti-type II collagen antibody-induced arthritis. J Immunol 170:4318–4324

    PubMed  CAS  Google Scholar 

  62. Nakamura A, Yuasa T, Ujike A, Ono M, Nukiwa T, Ravetch JV, Takai T (2000) Fcgamma receptor IIB-deficient mice develop Goodpasture’s syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease. J Exp Med 191:899–906

    PubMed  CAS  Google Scholar 

  63. Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV (1999) Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med 189:179–185

    PubMed  CAS  Google Scholar 

  64. Bolland S, Ravetch JV (2000) Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 13:277–285

    PubMed  CAS  Google Scholar 

  65. McGaha TL, Sorrentino B, Ravetch JV (2005) Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 307:590–593

    PubMed  CAS  Google Scholar 

  66. Bolland S, Yim YS, Tus K, Wakeland EK, Ravetch JV (2002) Genetic modifiers of systemic lupus erythematosus in FcgammaRIIB(−/−) mice. J Exp Med 195:1167–1174

    PubMed  CAS  Google Scholar 

  67. Yajima K, Nakamura A, Sugahara A, Takai T (2003) FcgammaRIIB deficiency with Fas mutation is sufficient for the development of systemic autoimmune disease. Eur J Immunol 33:1020–1029

    PubMed  CAS  Google Scholar 

  68. Kono H, Kyogoku C, Suzuki T, Tsuchiya N, Honda H, Yamamoto K, Tokunaga K, Honda Z (2005) FcgammaRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum Mol Genet 14:2881–2892

    PubMed  CAS  Google Scholar 

  69. O’Keefe TL, Williams GT, Davies SL, Neuberger MS (1996) Hyperresponsive B cells in CD22-deficient mice. Science 274:798–801

    PubMed  CAS  Google Scholar 

  70. O’Keefe TL, Williams GT, Batista FD, Neuberger MS (1999) Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med 189:1307–1313

    PubMed  CAS  Google Scholar 

  71. Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, Stacker SA, Dunn AR (1995) Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83:301–311

    PubMed  CAS  Google Scholar 

  72. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151

    PubMed  CAS  Google Scholar 

  73. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdottir H, Grondal G, Bolstad AI, Svenungsson E, Lundberg I, Sturfelt G, Jonssen A, Truedsson L, Lima G, Alcocer-Varela J, Jonsson R, Gyllensten UB, Harley JB, Alarcon-Segovia D, Steinsson K, Alarcon-Riquelme ME (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–669

    PubMed  CAS  Google Scholar 

  74. Smith KG, Fearon DT (2000) Receptor modulators of B-cell receptor signalling–CD19/CD22. Curr Top Microbiol Immunol 245:195–212

    PubMed  CAS  Google Scholar 

  75. Carter RH, Fearon DT (1992) CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256:105–107

    PubMed  CAS  Google Scholar 

  76. Sato S, Ono N, Steeber DA, Pisetsky DS, Tedder TF (1996) CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity. J Immunol 157:4371–4378

    PubMed  CAS  Google Scholar 

  77. Inaoki M, Sato S, Weintraub BC, Goodnow CC, Tedder TF (1997) CD19-regulated signaling thresholds control peripheral tolerance and autoantibody production in B lymphocytes. J Exp Med 186:1923–1931

    PubMed  CAS  Google Scholar 

  78. Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K (2000) Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol 165:6635–6643

    PubMed  CAS  Google Scholar 

  79. Jun JE, Goodnow CC (2003) Scaffolding of antigen receptors for immunogenic versus tolerogenic signaling. Nat Immunol 4:1057–1064

    PubMed  CAS  Google Scholar 

  80. Jun JE, Wilson LE, Vinuesa CG, Lesage S, Blery M, Miosge LA, Cook MC, Kucharska EM, Hara H, Penninger JM, Domashenz H, Hong NA, Glynne RJ, Nelms KA, Goodnow CC (2003) Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 18:751–762

    PubMed  CAS  Google Scholar 

  81. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, Soppet D, Charters M, Gentz R, Parmelee D, Li Y, Galperina O, Giri J, Roschke V, Nardelli B, Carrell J, Sosnovtseva S, Greenfield W, Ruben SM, Olsen HS, Fikes J, Hilbert DM (1999) BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285:260–263

    PubMed  CAS  Google Scholar 

  82. Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, Cerutti A (2002) DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 3:822–829

    PubMed  CAS  Google Scholar 

  83. Pers JO, Daridon C, Devauchelle V, Jousse S, Saraux A, Jamin C, Youinou P (2005) BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann N Y Acad Sci 1050:34–39

    PubMed  CAS  Google Scholar 

  84. Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K, Xu W, Parrish-Novak J, Foster D, Lofton-Day C, Moore M, Littau A, Grossman A, Haugen H, Foley K, Blumberg H, Harrison K, Kindsvogel W, Clegg CH (2000) TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404:995–999

    PubMed  CAS  Google Scholar 

  85. Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, Tschopp J, Browning JL (1999) Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190:1697–1710

    PubMed  CAS  Google Scholar 

  86. Groom J, Kalled SL, Cutler AH, Olson C, Woodcock SA, Schneider P, Tschopp J, Cachero TG, Batten M, Wheway J, Mauri D, Cavill D, Gordon TP, Mackay CR, Mackay F (2002) Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren’s syndrome. J Clin Invest 109:59–68

    PubMed  CAS  Google Scholar 

  87. Batten M, Groom J, Cachero TG, Qian F, Schneider P, Tschopp J, Browning JL, Mackay F (2000) BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 192:1453–1466

    PubMed  CAS  Google Scholar 

  88. Groom JR, Fletcher CA, Walters SN, Grey ST, Watt SV, Sweet MJ, Smyth MJ, Mackay CR, Mackay F (2007) BAFF and MyD88 signals promote a lupus-like disease independent of T cells. J Exp Med 204:1959–1971

    PubMed  CAS  Google Scholar 

  89. Khare SD, Sarosi I, Xia XZ, McCabe S, Miner K, Solovyev I, Hawkins N, Kelley M, Chang D, Van G, Ross L, Delaney J, Wang L, Lacey D, Boyle WJ, Hsu H (2000) Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc Natl Acad Sci USA 97:3370–3375

    PubMed  CAS  Google Scholar 

  90. Seshasayee D, Valdez P, Yan M, Dixit VM, Tumas D, Grewal IS (2003) Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity 18:279–288

    PubMed  CAS  Google Scholar 

  91. Baker KP, Edwards BM, Main SH, Choi GH, Wager RE, Halpern WG, Lappin PB, Riccobene T, Abramian D, Sekut L, Sturm B, Poortman C, Minter RR, Dobson CL, Williams E, Carmen S, Smith R, Roschke V, Hilbert DM, Vaughan TJ, Albert VR (2003) Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum 48:3253–3265

    PubMed  CAS  Google Scholar 

  92. Martin F, Chan AC (2006) B cell immunobiology in disease: evolving concepts from the clinic. Annu Rev Immunol 24:467–496

    PubMed  CAS  Google Scholar 

  93. Means TK, Luster AD (2005) Toll-like receptor activation in the pathogenesis of systemic lupus erythematosus. Ann N Y Acad Sci 1062:242–251

    PubMed  Google Scholar 

  94. Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J, Liang C, Bartov G, McDaniel LD, Zhou XJ, Schultz RA, Wakeland EK (2006) A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA 103:9970–9975

    PubMed  CAS  Google Scholar 

  95. Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S (2006) Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312:1669–1672

    PubMed  CAS  Google Scholar 

  96. Preble OT, Black RJ, Friedman RM, Klippel JH, Vilcek J (1982) Systemic lupus erythematosus: presence in human serum of an unusual acid-labile leukocyte interferon. Science 216:429–431

    PubMed  CAS  Google Scholar 

  97. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, Pascual V (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197:711–723

    PubMed  CAS  Google Scholar 

  98. Ronnblom LE, Alm GV, Oberg K (1991) Autoimmune phenomena in patients with malignant carcinoid tumors during interferon-alpha treatment. Acta Oncol 30:537–540

    PubMed  CAS  Google Scholar 

  99. Banchereau J, Pascual V (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25:383–392

    PubMed  CAS  Google Scholar 

  100. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284:1835–1837

    PubMed  CAS  Google Scholar 

  101. Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J (2001) Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294:1540–1543

    PubMed  CAS  Google Scholar 

  102. Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711

    PubMed  CAS  Google Scholar 

  103. Banchereau J, Pascual V, Palucka AK (2004) Autoimmunity through cytokine-induced dendritic cell activation. Immunity 20:539–550

    PubMed  CAS  Google Scholar 

  104. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    PubMed  CAS  Google Scholar 

  105. Le Bon A, Thompson C, Kamphuis E, Durand V, Rossmann C, Kalinke U, Tough DF (2006) Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J Immunol 176:2074–2078

    PubMed  CAS  Google Scholar 

  106. Lefkowith JB, Kiehl M, Rubenstein J, DiValerio R, Bernstein K, Kahl L, Rubin RL, Gourley M (1996) Heterogeneity and clinical significance of glomerular-binding antibodies in systemic lupus erythematosus. J Clin Invest 98:1373–1380

    PubMed  CAS  Google Scholar 

  107. Vlahakos DV, Foster MH, Adams S, Katz M, Ucci AA, Barrett KJ, Datta SK, Madaio MP (1992) Anti-DNA antibodies form immune deposits at distinct glomerular and vascular sites. Kidney Int 41:1690–1700

    PubMed  CAS  Google Scholar 

  108. Raz E, Brezis M, Rosenmann E, Eilat D (1989) Anti-DNA antibodies bind directly to renal antigens and induce kidney dysfunction in the isolated perfused rat kidney. J Immunol 142:3076–3082

    PubMed  CAS  Google Scholar 

  109. Clough JD, Couri J, Youssoufian H, Gephardt GN, Tubbs R (1986) Antibodies against nuclear antigens: association with lupus nephritis. Cleve Clin Q 53:259–265

    PubMed  CAS  Google Scholar 

  110. Gladman DD, Urowitz MB, Keystone EC (1979) Serologically active clinically quiescent systemic lupus erythematosus: a discordance between clinical and serologic features. Am J Med 66:210–215

    PubMed  CAS  Google Scholar 

  111. Madaio MP, Shlomchik MJ (1996) Emerging concepts regarding B cells and autoantibodies in murine lupus nephritis. B cells have multiple roles; all autoantibodies are not equal. J Am Soc Nephrol 7:387–396

    PubMed  CAS  Google Scholar 

  112. Madaio MP (2003) Lupus autoantibodies 101: one size does not fit all; however, specificity influences pathogenicity. Clin Exp Immunol 131:396–397

    PubMed  CAS  Google Scholar 

  113. Izui S, Elder JH, McConahey PJ, Dixon FJ (1981) Identification of retroviral gp70 and anti-gp70 antibodies involved in circulating immune complexes in NZB X NZW mice. J Exp Med 153:1151–1160

    PubMed  CAS  Google Scholar 

  114. Haywood ME, Vyse TJ, McDermott A, Thompson EM, Ida A, Walport MJ, Izui S, Morley BJ (2001) Autoantigen glycoprotein 70 expression is regulated by a single locus, which acts as a checkpoint for pathogenic anti-glycoprotein 70 autoantibody production and hence for the corresponding development of severe nephritis, in lupus-prone PXSB mice. J Immunol 167:1728–1733

    PubMed  CAS  Google Scholar 

  115. Bernstein KA, Valerio RD, Lefkowith JB (1995) Glomerular binding activity in MRL lpr serum consists of antibodies that bind to a DNA/histone/type IV collagen complex. J Immunol 154:2424–2433

    PubMed  CAS  Google Scholar 

  116. van Bruggen MC, Walgreen B, Rijke TP, Tamboer W, Kramers K, Smeenk RJ, Monestier M, Fournie GJ, Berden JH (1997) Antigen specificity of anti-nuclear antibodies complexed to nucleosomes determines glomerular basement membrane binding in vivo. Eur J Immunol 27:1564–1569

    PubMed  Google Scholar 

  117. Berden JH, Licht R, van Bruggen MC, Tax WJ (1999) Role of nucleosomes for induction and glomerular binding of autoantibodies in lupus nephritis. Curr Opin Nephrol Hypertens 8:299–306

    PubMed  CAS  Google Scholar 

  118. Shlomchik MJ, Madaio MP (2003) The role of antibodies and B cells in the pathogenesis of lupus nephritis. Springer Semin Immunopathol 24:363–375

    PubMed  CAS  Google Scholar 

  119. Fearon DT (1980) Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte. J Exp Med 152:20–30

    PubMed  CAS  Google Scholar 

  120. Frank MM, Lawley TJ, Hamburger MI, Brown EJ (1983) NIH Conference: Immunoglobulin G Fc receptor-mediated clearance in autoimmune diseases. Ann Intern Med 98:206–218

    PubMed  CAS  Google Scholar 

  121. Kimberly RP, Ralph P (1983) Endocytosis by the mononuclear phagocyte system and autoimmune disease. Am J Med 74:481–493

    PubMed  CAS  Google Scholar 

  122. Frank MM, Hamburger MI, Lawley TJ, Kimberly RP, Plotz PH (1979) Defective reticuloendothelial system Fc-receptor function in systemic lupus erythematosus. N Engl J Med 300:518–523

    Article  PubMed  CAS  Google Scholar 

  123. Hamburger MI, Lawley TJ, Kimberly RP, Plotz PH, Frank MM (1982) A serial study of splenic reticuloendothelial system Fc receptor functional activity in systemic lupus erythematosus. Arthritis Rheum 25:48–54

    PubMed  CAS  Google Scholar 

  124. Davies KA, Peters AM, Beynon HL, Walport MJ (1992) Immune complex processing in patients with systemic lupus erythematosus. In vivo imaging and clearance studies. J Clin Invest 90:2075–2083

    Article  PubMed  CAS  Google Scholar 

  125. Davies KA, Robson MG, Peters AM, Norsworthy P, Nash JT, Walport MJ (2002) Defective Fc-dependent processing of immune complexes in patients with systemic lupus erythematosus. Arthritis Rheum 46:1028–1038

    PubMed  CAS  Google Scholar 

  126. Schur PH (1995) Genetics of systemic lupus erythematosus. Lupus 4:425–437

    PubMed  CAS  Google Scholar 

  127. Carroll MC (1998) The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 16:545–568

    PubMed  CAS  Google Scholar 

  128. Nash JT, Taylor PR, Botto M, Norsworthy PJ, Davies KA, Walport MJ (2001) Immune complex processing in C1q-deficient mice. Clin Exp Immunol 123:196–202

    PubMed  CAS  Google Scholar 

  129. Cortes-Hernandez J, Fossati-Jimack L, Petry F, Loos M, Izui S, Walport MJ, Cook HT, Botto M (2004) Restoration of C1q levels by bone marrow transplantation attenuates autoimmune disease associated with C1q deficiency in mice. Eur J Immunol 34:3713–3722

    PubMed  CAS  Google Scholar 

  130. van de Winkel JG, Capel PJ (1993) Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol Today 14:215–221

    PubMed  Google Scholar 

  131. Parren PW, Warmerdam PA, Boeije LC, Arts J, Westerdaal NA, Vlug A, Capel PJ, Aarden LA, van de Winkel JG (1992) On the interaction of IgG subclasses with the low affinity Fc gamma RIIa (CD32) on human monocytes, neutrophils, and platelets. Analysis of a functional polymorphism to human IgG2. J Clin Invest 90:1537–1546

    PubMed  CAS  Google Scholar 

  132. Salmon JE, Edberg JC, Brogle NL, Kimberly RP (1992) Allelic polymorphisms of human Fc gamma receptor IIA and Fc gamma receptor IIIB. Independent mechanisms for differences in human phagocyte function. J Clin Invest 89:1274–1281

    PubMed  CAS  Google Scholar 

  133. Lehrnbecher T, Foster CB, Zhu S, Leitman SF, Goldin LR, Huppi K, Chanock SJ (1999) Variant genotypes of the low-affinity Fcgamma receptors in two control populations and a review of low-affinity Fcgamma receptor polymorphisms in control and disease populations. Blood 94:4220–4232

    PubMed  CAS  Google Scholar 

  134. Haseley LA, Wisnieski JJ, Denburg MR, Michael-Grossman AR, Ginzler EM, Gourley MF, Hoffman JH, Kimberly RP, Salmon JE (1997) Antibodies to C1q in systemic lupus erythematosus: characteristics and relation to Fc gamma RIIA alleles. Kidney Int 52:1375–1380

    PubMed  CAS  Google Scholar 

  135. Norsworthy P, Theodoridis E, Botto M, Athanassiou P, Beynon H, Gordon C, Isenberg D, Walport MJ, Davies KA (1999) Overrepresentation of the Fcgamma receptor type IIA R131/R131 genotype in Caucasoid systemic lupus erythematosus patients with autoantibodies to C1q and glomerulonephritis. Arthritis Rheum 42:1828–1832

    PubMed  CAS  Google Scholar 

  136. Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, Salmon JE, Kimberly RP (1997) A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 100:1059–1070

    PubMed  CAS  Google Scholar 

  137. Coxon A, Cullere X, Knight S, Sethi S, Wakelin MW, Stavrakis G, Luscinskas FW, Mayadas TN (2001) Fc gamma RIII mediates neutrophil recruitment to immune complexes. a mechanism for neutrophil accumulation in immune-mediated inflammation. Immunity 14:693–704

    PubMed  CAS  Google Scholar 

  138. Salmon JE, Millard SS, Brogle NL, Kimberly RP (1995) Fc gamma receptor IIIb enhances Fc gamma receptor IIa function in an oxidant-dependent and allele-sensitive manner. J Clin Invest 95:2877–2885

    PubMed  CAS  Google Scholar 

  139. Kyogoku C, Dijstelbloem HM, Tsuchiya N, Hatta Y, Kato H, Yamaguchi A, Fukazawa T, Jansen MD, Hashimoto H, van de Winkel JG, Kallenberg CG, Tokunaga K (2002) Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 46:1242–1254

    PubMed  CAS  Google Scholar 

  140. Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J, Mangion J, Roberton-Lowe C, Marshall AJ, Petretto E, Hodges MD, Bhangal G, Patel SG, Sheehan-Rooney K, Duda M, Cook PR, Evans DJ, Domin J, Flint J, Boyle JJ, Pusey CD, Cook HT (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439:851–855

    PubMed  CAS  Google Scholar 

  141. Fanciulli M, Norsworthy PJ, Petretto E, Dong R, Harper L, Kamesh L, Heward JM, Gough SC, de Smith A, Blakemore AI, Froguel P, Owen CJ, Pearce SH, Teixeira L, Guillevin L, Graham DS, Pusey CD, Cook HT, Vyse TJ, Aitman TJ (2007) FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet 39:721–723

    PubMed  CAS  Google Scholar 

  142. Cassese G, Lindenau S, de Boer B, Arce S, Hauser A, Riemekasten G, Berek C, Hiepe F, Krenn V, Radbruch A, Manz RA (2001) Inflamed kidneys of NZB/W mice are a major site for the homeostasis of plasma cells. Eur J Immunol 31:2726–2732

    PubMed  CAS  Google Scholar 

  143. Clynes R, Dumitru C, Ravetch JV (1998) Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279:1052–1054

    PubMed  CAS  Google Scholar 

  144. Walport MJ (2001) Complement. First of two parts. N Engl J Med 344:1058–1066

    PubMed  CAS  Google Scholar 

  145. Mozes E, Lovchik J, Zinger H, Singer DS (2005) MHC class I expression regulates susceptibility to spontaneous autoimmune disease in (NZBxNZW)F1 mice. Lupus 14:308–314

    PubMed  CAS  Google Scholar 

  146. Zhu J, Liu X, Xie C, Yan M, Yu Y, Sobel ES, Wakeland EK, Mohan C (2005) T cell hyperactivity in lupus as a consequence of hyperstimulatory antigen-presenting cells. J Clin Invest 115:1869–1878

    PubMed  CAS  Google Scholar 

  147. Decker P, Kotter I, Klein R, Berner B, Rammensee HG (2006) Monocyte-derived dendritic cells over-express CD86 in patients with systemic lupus erythematosus. Rheumatology (Oxford) 45:1087–1095

    CAS  Google Scholar 

  148. Li X, Wu J, Carter RH, Edberg JC, Su K, Cooper GS, Kimberly RP (2003) A novel polymorphism in the Fcgamma receptor IIB (CD32B) transmembrane region alters receptor signaling. Arthritis Rheum 48:3242–3252

    PubMed  CAS  Google Scholar 

  149. Siriboonrit U, Tsuchiya N, Sirikong M, Kyogoku C, Bejrachandra S, Suthipinittharm P, Luangtrakool K, Srinak D, Thongpradit R, Fujiwara K, Chandanayingyong D, Tokunaga K (2003) Association of Fcgamma receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 61:374–383

    PubMed  CAS  Google Scholar 

  150. Chu ZT, Tsuchiya N, Kyogoku C, Ohashi J, Qian YP, Xu SB, Mao CZ, Chu JY, Tokunaga K (2004) Association of Fcgamma receptor IIb polymorphism with susceptibility to systemic lupus erythematosus in Chinese: a common susceptibility gene in the Asian populations. Tissue Antigens 63:21–27

    PubMed  CAS  Google Scholar 

  151. Floto RA, Clatworthy MR, Heilbronn KR, Rosner DR, MacAry PA, Rankin A, Lehner PJ, Ouwehand WH, Allen JM, Watkins NA, Smith KG (2005) Loss of function of a lupus-associated FcgammaRIIb polymorphism through exclusion from lipid rafts. Nat Med 11:1056–1058

    PubMed  CAS  Google Scholar 

  152. Pierce SK, Morris JF, Grusby MJ, Kaumaya P, van Buskirk A, Srinivasan M, Crump B, Smolenski LA (1988) Antigen-presenting function of B lymphocytes. Immunol Rev 106:149–180

    PubMed  CAS  Google Scholar 

  153. Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ (1999) A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 189:1639–1648

    PubMed  CAS  Google Scholar 

  154. Chan O, Madaio MP, Shlomchik MJ (1997) The roles of B cells in MRL/lpr murine lupus. Ann N Y Acad Sci 815:75–87

    PubMed  CAS  Google Scholar 

  155. Yan J, Harvey BP, Gee RJ, Shlomchik MJ, Mamula MJ (2006) B cells drive early T cell autoimmunity in vivo prior to dendritic cell-mediated autoantigen presentation. J Immunol 177:4481–4487

    PubMed  CAS  Google Scholar 

  156. Harvey BP, Gee RJ, Haberman AM, Shlomchik MJ, Mamula MJ (2007) Antigen presentation and transfer between B cells and macrophages. Eur J Immunol 37:1739–1751

    PubMed  CAS  Google Scholar 

  157. Deshmukh US, Gaskin F, Lewis JE, Kannapell CC, Fu SM (2003) Mechanisms of autoantibody diversification to SLE-related autoantigens. Ann N Y Acad Sci 987:91–98

    PubMed  CAS  Google Scholar 

  158. Kalled SL, Cutler AH, Datta SK, Thomas DW (1998) Anti-CD40 ligand antibody treatment of SNF1 mice with established nephritis: preservation of kidney function. J Immunol 160:2158–2165

    PubMed  CAS  Google Scholar 

  159. Grammer AC, Slota R, Fischer R, Gur H, Girschick H, Yarboro C, Illei GG, Lipsky PE (2003) Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. J Clin Invest 112:1506–1520

    PubMed  CAS  Google Scholar 

  160. Sidiropoulos PI, Boumpas DT (2004) Lessons learned from anti-CD40L treatment in systemic lupus erythematosus patients. Lupus 13:391–397

    PubMed  CAS  Google Scholar 

  161. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352

    PubMed  CAS  Google Scholar 

  162. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147:3815–3822

    PubMed  CAS  Google Scholar 

  163. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB (2004) Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 22:929–979

    PubMed  CAS  Google Scholar 

  164. Mauri C, Gray D, Mushtaq N, Londei M (2003) Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 197:489–501

    CAS  Google Scholar 

  165. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3:944–950

    PubMed  CAS  Google Scholar 

  166. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16:219–230

    PubMed  CAS  Google Scholar 

  167. Lenert P, Brummel R, Field EH, Ashman RF (2005) TLR-9 activation of marginal zone B cells in lupus mice regulates immunity through increased IL-10 production. J Clin Immunol 25:29–40

    PubMed  CAS  Google Scholar 

  168. Brummel R, Lenert P (2005) Activation of marginal zone B cells from lupus mice with type A(D) CpG-oligodeoxynucleotides. J Immunol 174:2429–2434

    PubMed  CAS  Google Scholar 

  169. Blenman KR, Duan B, Xu Z, Wan S, Atkinson MA, Flotte TR, Croker BP, Morel L (2006) IL-10 regulation of lupus in the NZM2410 murine model. Lab Invest 86:1136–1148

    PubMed  CAS  Google Scholar 

  170. Amu S, Tarkowski A, Dorner T, Bokarewa M, Brisslert M (2007) The human immunomodulatory CD25+ B cell population belongs to the memory B cell pool. Scand J Immunol 66:77–86

    PubMed  CAS  Google Scholar 

  171. Hagiwara E, Gourley MF, Lee S, Klinman DK (1996) Disease severity in patients with systemic lupus erythematosus correlates with an increased ratio of interleukin-10: interferon-gamma-secreting cells in the peripheral blood. Arthritis Rheum 39:379–385

    PubMed  CAS  Google Scholar 

  172. Horwitz DA, Gray JD, Behrendsen SC, Kubin M, Rengaraju M, Ohtsuka K, Trinchieri G (1998) Decreased production of interleukin-12 and other Th1-type cytokines in patients with recent-onset systemic lupus erythematosus. Arthritis Rheum 41:838–844

    PubMed  CAS  Google Scholar 

  173. Go NF, Castle BE, Barrett R, Kastelein R, Dang W, Mosmann TR, Moore KW, Howard M (1990) Interleukin 10, a novel B cell stimulatory factor: unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med 172:1625–1631

    PubMed  CAS  Google Scholar 

  174. Kaser A, Dunzendorfer S, Offner FA, Ryan T, Schwabegger A, Cruikshank WW, Wiedermann CJ, Tilg H (1999) A role for IL-16 in the cross-talk between dendritic cells and T cells. J Immunol 163:3232–3238

    PubMed  CAS  Google Scholar 

  175. Kaser A, Dunzendorfer S, Offner FA, Ludwiczek O, Enrich B, Koch RO, Cruikshank WW, Wiedermann CJ, Tilg H (2000) B lymphocyte-derived IL-16 attracts dendritic cells and Th cells. J Immunol 165:2474–2480

    PubMed  CAS  Google Scholar 

  176. Kalergis AM, Ravetch JV (2002) Inducing tumor immunity through the selective engagement of activating Fcgamma receptors on dendritic cells. J Exp Med 195:1653–1659

    PubMed  CAS  Google Scholar 

  177. Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Hermine O, Tough DF, Kaveri SV (2005) Modulation of dendritic cell maturation and function by B lymphocytes. J Immunol 175:15–20

    PubMed  CAS  Google Scholar 

  178. Bruhns P, Samuelsson A, Pollard JW, Ravetch JV (2003) Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 18:573–581

    PubMed  CAS  Google Scholar 

  179. Oliver G, Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16:773–783

    PubMed  CAS  Google Scholar 

  180. Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O’Fallon WM, Goronzy JJ, Weyand CM (2001) Lymphoid neogenesis in rheumatoid synovitis. J Immunol 167:1072–1080

    PubMed  CAS  Google Scholar 

  181. Zheng B, Ozen Z, Zhang X, De Silva S, Marinova E, Guo L, Wansley D, Huston DP, West MR, Han S (2005) CXCL13 neutralization reduces the severity of collagen-induced arthritis. Arthritis Rheum 52:620–626

    PubMed  CAS  Google Scholar 

  182. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217

    PubMed  CAS  Google Scholar 

  183. Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD (2005) Antigen presentation by dendritic cells in renal lymph nodes is linked to systemic and local injury to the kidney. Kidney Int 68:1096–1108

    PubMed  CAS  Google Scholar 

  184. Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24:203–215

    PubMed  CAS  Google Scholar 

  185. Leandro MJ, Cambridge G, Edwards JC, Ehrenstein MR, Isenberg DA (2005) B-cell depletion in the treatment of patients with systemic lupus erythematosus: a longitudinal analysis of 24 patients. Rheumatology (Oxford) 44:1542–1545

    CAS  Google Scholar 

  186. Smith KG, Jones RB, Burns SM, Jayne DR (2006) Long-term comparison of rituximab treatment for refractory systemic lupus erythematosus and vasculitis: Remission, relapse, and re-treatment. Arthritis Rheum 54:2970–2982

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menna R. Clatworthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clatworthy, M.R., Smith, K.G.C. B cells in glomerulonephritis: focus on lupus nephritis. Semin Immunopathol 29, 337–353 (2007). https://doi.org/10.1007/s00281-007-0092-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-007-0092-1

Keywords

Navigation