Skip to main content

Advertisement

Log in

Evaluation of cytogenetic and molecular markers with MTX-mediated toxicity in pediatric acute lymphoblastic leukemia patients

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Pediatric acute lymphoblastic leukemia (pALL) patients have better overall survival and methotrexate (MTX) is an effective drug used in their treatment. However, the treatment-related adverse effects (TRAEs) have a bigger impact on the therapy. In this study, we have evaluated the association of polymorphisms in genes encoding proteins engaged in MTX metabolism, and the cytogenetic aberrations with TRAEs.

Methods

A total of 115 patients between the age of 1 and 18 years (average: 6.6) under maintenance therapy were selected for the study. SLC19A1 (c.80G > A), MTHFR (c.677C > T; c.1298A > C), and TYMS (c.*450_*455del) genotypes were determined using PCR techniques and Sanger sequencing. Cytogenetic and SNP findings were analyzed for any association with the reported toxicities using odds ratio, chi-square test, multifactor dimensionality reduction (MDR) analysis for synergistic effect and, multinomial logistic regression analysis for the likelihood of adverse events.

Results

Among the evaluated genetic variations, SLC19A1 (c.80G > A) was significantly associated with TRAEs (OR = 5.71, p = 0.002). Multinomial logistic regression analysis (chi-sq = 16.64, p < 0.001) and MDR analysis (chi-sq = 10.51 p < 0.001) confirmed the finding. On the other hand, no significant association was observed between adverse events and any specific cytogenetic aberration.

Conclusion

SLC19A1 facilitates the import of cyclic dinucleotides and reduced folates, evaluating genotypes in this gene can help in better management of patients on methotrexate treatment. Assessing a broader gene panel can help in finding more associated markers and delivering personalized medicine to the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its additional files).

References

  1. Longo DL, Hunger SP, Mullighan CG (2015) Acute lymphoblastic leukemia in children. N Engl J Med 373(16):1541–1552. https://doi.org/10.1056/nejmra1400972

    Article  Google Scholar 

  2. Moon W, Loftus EV (2016) Review article: recent advances in pharmacogenetics and pharmacokinetics for safe and effective thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther 43(8):863–883. https://doi.org/10.1111/apt.13559

    Article  CAS  PubMed  Google Scholar 

  3. Rudin S, Marable M, Huang RS (2017) The promise of pharmacogenomics in reducing toxicity during acute lymphoblastic leukemia maintenance treatment. Genomics Proteomics Bioinformatics 15(2):82–93. https://doi.org/10.1016/j.gpb.2016.11.003

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fukino K, Kawashima T, Suzuki M et al (2007) Methylenetetrahydrofolate reductase and reduced folate carrier-1 genotypes and methotrexate serum concentrations in patients with rheumatoid arthritis. J Toxicol Sci 32(4):449–452. https://doi.org/10.2131/jts.32.449

    Article  CAS  PubMed  Google Scholar 

  5. Laverdie C, Chiasson S, Costea I et al (2002) Brief report Polymorphism G 80 A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood 100(10):3832–3834. https://doi.org/10.1182/blood.v100.10.3832

    Article  Google Scholar 

  6. Cwiklinska M, Czogala M, Kwiecinska K et al (2020) Polymorphisms of SLC19A1 80 G>A, MTHFR 677 C>T, and tandem TS repeats influence pharmacokinetics, acute liver toxicity, and vomiting in children with acute lymphoblastic leukemia treated with high doses of methotrexate. Front Pediatr. https://doi.org/10.3389/fped.2020.00307

    Article  PubMed  PubMed Central  Google Scholar 

  7. Whetstine JR, Gifford AJ, Witt T, et al (2001) Single nucleotide polymorphisms in the human reduced folate carrier: characterization of a high-frequency G/A variant at position 80 and transport properties of the His27 and Arg27 carriers. Clin Cancer Res. 7(11):3416–3422. https://clincancerres.aacrjournals.org/content/7/11/3416.long

  8. De Miranda DO, Barros JEXS, Vieira MMS et al (2014) Reduced folate carrier-1 G80a gene polymorphism is associated with neuroblastoma’s development. Mol Biol Rep 41(8):5069–5075. https://doi.org/10.1007/s11033-014-3372-6

    Article  CAS  PubMed  Google Scholar 

  9. Motassem A, Rand Y, Daniah F et al (2019) Folate pathway genetic polymorphisms modulate methotrexate-induced toxicity in childhood acute lymphoblastic leukemia. Cancer Chemother Pharmacol 4:755–762. https://doi.org/10.1007/s00280-019-03776-8

    Article  CAS  Google Scholar 

  10. Ulrich CM, Yasui Y, Storb R et al (2013) Pharmacogenetics of methotrexate : toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism Brief report Pharmacogenetics of methotrexate : toxicity among marrow transplantation patients varies. Blood. https://doi.org/10.1182/blood.v98.1.231

    Article  Google Scholar 

  11. Karas-Kuzelicki N, Milek M, Mlinaric-Rascan I (2010) MTHFR and TYMS genotypes influence TPMT activity and its differential modulation in males and females. Clin Biochem 43(1–2):37–42. https://doi.org/10.1016/j.clinbiochem.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  12. Lazic J, Tosic N, Dokmanovic L et al (2010) Clinical features of the most common fusion genes in childhood acute lymphoblastic leukemia. Med Oncol 27(2):449–453. https://doi.org/10.1007/s12032-009-9232-x

    Article  CAS  PubMed  Google Scholar 

  13. Akpek G, Zahurak ML, Piantadosi S et al (2001) Development of a prognostic model for grading chronic graft-versus-host disease. Blood 97(5):1219–1226. https://doi.org/10.1182/blood.v97.5.1219

    Article  CAS  PubMed  Google Scholar 

  14. Tamashiro MS, Aikawa NE, Campos LMA et al (2011) Discrimination of acute lymphoblastic leukemia from systemic-onset juvenile idiopathic arthritis at disease onset. Clinics (Sao Paulo) 66(10):1665–1669. https://doi.org/10.1590/s1807-59322011001000001

    Article  Google Scholar 

  15. Moulik N, Kumar A, Agrawal S et al (2016) Effect of folate status and methylenetetrahydrofolate reductase genotypes on the complications and outcome of high dose methotrexate chemotherapy in north Indian children with acute lymphoblastic leukemia. Indian J Med Paediatr Oncol 37(2):85–89. https://doi.org/10.4103/0971-5851.180144

    Article  PubMed  PubMed Central  Google Scholar 

  16. Salazar J, Altes A, Del Rio E et al (2012) Methotrexate consolidation treatment according to pharmacogenetics of MTHFR ameliorates event-free survival in childhood acute lymphoblastic leukaemia. Pharmacogenomics J 12(5):379–385. https://doi.org/10.1038/tpj.2011.25

    Article  CAS  PubMed  Google Scholar 

  17. Yang L, Hu X, Xu L (2012) Impact of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on methotrexate-induced toxicities in acute lymphoblastic leukemia: a meta-analysis. Tumor Biol 33(5):1445–1454. https://doi.org/10.1007/s13277-012-0395-2

    Article  CAS  Google Scholar 

  18. Motsinger AA, Ritchie MD (2006) Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Hum Genomics 2(5):318–328. https://doi.org/10.1186/1479-7364-2-5-318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pui C-H, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354(2):166–178. https://doi.org/10.1056/nejmra052603

    Article  CAS  PubMed  Google Scholar 

  20. Inaba H, Greaves M, Mullighan CG (2013) Acute lymphoblastic leukaemia. Lancet (London, England) 381(9881):1943–1955. https://doi.org/10.1016/s0140-6736(12)62187-4

    Article  Google Scholar 

  21. Pui C, Relling M (2004) Acute lymphoblastic leukemia. N Engl J Med 15:1535–1548. https://doi.org/10.1056/nejmra023001

    Article  Google Scholar 

  22. Schmiegelow K (2009) Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol 146(5):489–503. https://doi.org/10.1111/j.1365-2141.2009.07765.x

    Article  CAS  PubMed  Google Scholar 

  23. Lima A, Bernardes M, Sousa H et al (2014) SLC19A1 80G allele as a biomarker of methotrexate-related gastrointestinal toxicity in Portuguese rheumatoid arthritis patients. Pharmacogenomics 15(6):807–820. https://doi.org/10.2217/pgs.13.244

    Article  CAS  PubMed  Google Scholar 

  24. Kotur N, Lazic J, Ristivojevic B et al (2020) Pharmacogenomic markers of methotrexate response in the consolidation phase of pediatric acute lymphoblastic leukemia treatment. Genes (Basel) 11(4):1–17. https://doi.org/10.3390/genes11040468

    Article  CAS  Google Scholar 

  25. Shimasaki N, Mori T, Samejima H et al (2006) Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol 28(2):64–68. https://doi.org/10.1097/01.mph.0000198269.61948.90

    Article  CAS  PubMed  Google Scholar 

  26. Choi R, Sohn I, Kim MJ et al (2019) Pathway genes and metabolites in thiopurine therapy in Korean children with acute lymphoblastic leukaemia. Br J Clin Pharmacol 85(7):1585–1597. https://doi.org/10.1111/bcp.13943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park JA, Shin HY (2016) Influence of genetic polymorphisms in the folate pathway on toxicity after high-dose methotrexate treatment in pediatric osteosarcoma. Blood Res 51(1):50–57. https://doi.org/10.5045/br.2016.51.1.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li X, Hu M, Li W et al (2016) The association between reduced folate carrier-1 gene 80G/A polymorphism and methotrexate efficacy or methotrexate related-toxicity in rheumatoid arthritis: a meta-analysis. Int Immunopharmacol 38:8–15. https://doi.org/10.1016/j.intimp.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  29. Kotnik BF, Grabnar I (2011) Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol 10:993–1006. https://doi.org/10.1007/s00228-011-1046-z

    Article  CAS  Google Scholar 

  30. Hou Z, Ye J, Haska CL et al (2006) Transmembrane domains 4, 5, 7, 8, and 10 of the human reduced folate carrier are important structural or functional components of the transmembrane channel for folate substrates. J Biol Chem 281(44):33588–33596. https://doi.org/10.1074/jbc.m607049200

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Zhao R, Russell RG et al (2001) Localization of the murine reduced folate carrier as assessed by immunohistochemical analysis. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1513(1):49–54. https://doi.org/10.1016/s0005-2736(01)00340-6

    Article  CAS  Google Scholar 

  32. Zhao R, Russell RG, Wang Y et al (2001) Rescue of embryonic lethality in reduced folate carrier-deficient mice by maternal folic acid supplementation reveals early neonatal failure of hematopoietic organs. J Biol Chem 276(13):10224–10228. https://doi.org/10.1074/jbc.c000905200

    Article  CAS  PubMed  Google Scholar 

  33. Mikkelsen TS, Thorn CF, Yang JJ et al (2011) PharmGKB summary: methotrexate pathway. Pharmacogenet Genomics 21(10):679–686. https://doi.org/10.1097/fpc.0b013e328343dd93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramalingam R, Kaur H, Scott XS et al (2021) Pharmacogenetic evaluation of 6-mercaptopurine-mediated toxicity in pediatric acute lymphoblastic leukemia patients from a South Indian population. Pharmacogenomics 22(7):401–411. https://doi.org/10.2217/pgs-2020-0193

    Article  CAS  PubMed  Google Scholar 

  35. Levy AS, Sather HN, Steinherz PG et al (2003) Reduced folate carrier and dihydrofolate reductase expression in acute lymphocytic leukemia may predict outcome: A Children’s Cancer Group study. J Pediatr Hematol Oncol 25(9):688–695. https://doi.org/10.1097/00043426-200309000-00004

    Article  PubMed  Google Scholar 

  36. Suthandiram S, Gan G-G, Zain SM et al (2014) Effect of polymorphisms within methotrexate pathway genes on methotrexate toxicity and plasma levels in adults with hematological malignancies. Pharmacogenomics 15(11):1479–1494. https://doi.org/10.2217/pgs.14.97

    Article  CAS  PubMed  Google Scholar 

  37. Bohanec Grabar P, Leandro-García LJ, Inglada-Pérez L et al (2012) Genetic variation in the SLC19A1 gene and methotrexate toxicity in rheumatoid arthritis patients. Pharmacogenomics 13(14):1583–1594. https://doi.org/10.2217/pgs.12.150

    Article  CAS  PubMed  Google Scholar 

  38. Schaller L, Lauschke VM (2019) The genetic landscape of the human solute carrier (SLC) transporter superfamily. Hum Genet 138(11–12):1359–1377. https://doi.org/10.1007/s00439-019-02081-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muralidharan N, Misra DP, Jain VK et al (2017) Effect of thymidylate synthase (TYMS) gene polymorphisms with methotrexate treatment outcome in south Indian Tamil patients with rheumatoid arthritis. Clin Rheumatol 36(6):1253–1259. https://doi.org/10.1007/s10067-017-3608-7

    Article  PubMed  Google Scholar 

  40. Dorababu P, Naushad SM, Linga VG et al (2012) Genetic variants of thiopurine and folate metabolic pathways determine 6-MP-mediated hematological toxicity in childhood ALL. Pharmacogenomics 13(9):1001–1008. https://doi.org/10.2217/pgs.12.70

    Article  CAS  PubMed  Google Scholar 

  41. Manche SK, Jangala M, Dudekula D et al (2018) Polymorphisms in folate metabolism genes are associated with susceptibility to presbycusis. Life Sci 196(January):77–83. https://doi.org/10.1016/j.lfs.2018.01.015

    Article  CAS  PubMed  Google Scholar 

  42. Tiwari D, Das CR, Bose PD et al (2017) Associative role of TYMS6bpdel polymorphism and resulting hyperhomocysteinemia in the pathogenesis of preterm delivery and associated complications: a study from Northeast India. Gene 627:129–136. https://doi.org/10.1016/j.gene.2017.06.023

    Article  CAS  PubMed  Google Scholar 

  43. EL-Khodary NM, EL-Haggar SM, Eid MA et al (2012) Study of the pharmacokinetic and pharmacogenetic contribution to the toxicity of high-dose methotrexate in children with acute lymphoblastic leukemia. Med Oncol 29(3):2053–2062. https://doi.org/10.1007/s12032-011-9997-6

    Article  CAS  PubMed  Google Scholar 

  44. Campalani E, Arenas M, Marinaki AM et al (2007) Polymorphisms in folate, pyrimidine, and purine metabolism are associated with efficacy and toxicity of methotrexate in psoriasis. J Invest Dermatol 127(8):1860–1867. https://doi.org/10.1038/sj.jid.5700808

    Article  CAS  PubMed  Google Scholar 

  45. Soszynska K, Mucha B, Debski R et al (2008) The application of conventional cytogenetics, FISH, and RT-PCR to detect genetic changes in 70 children with ALL. Ann Hematol 87(12):991–1002. https://doi.org/10.1007/s00277-008-0540-6

    Article  CAS  PubMed  Google Scholar 

  46. Ariffin H, Chen SP, Kwok CS et al (2007) Ethnic differences in the frequency of subtypes of childhood acute lymphoblastic leukemia: Results of the Malaysia-Singapore Leukemia Study Group. J Pediatr Hematol Oncol 29(1):27–31. https://doi.org/10.1097/mph.0b013e318030ac4c

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all the patients and their parents who participated in the study. The authors would like to thank the support of Sri Ramachandra Institute of Higher Education and Research (SRIHER) and Kanchi Kamakoti Child Trust Hospital (KKCTH), Chennai, India. The authors also want to thank the Council of Scientific and Industrial Research and the Department of Biotechnology for their fundings.

Funding

This work was supported by Council of Scientific and Industrial Research, Government of India (File. No. 08/447(0001)/2019-EMR-I) and Department of Biotechnology, Government of India (Sanction Order No. 6242-P57/RGCB/PMD/DBT/HPKR/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon F. D. Paul.

Ethics declarations

Ethics approval and consent to participate

The study was approved by Institutional ethics committee (internal code IEC-NI/17/JUN/60/70) and performed according to the international regulations in Good Clinical Practices and to the ethical principles of the Declaration of Helsinki. Written informed consent was obtained from all the patients or parents/guardians whichever is applicable.

Consent to participate

Written informed consent was obtained from all the patients or parents/guardians whichever is applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalingam, R., Kaur, H., Scott, J.X. et al. Evaluation of cytogenetic and molecular markers with MTX-mediated toxicity in pediatric acute lymphoblastic leukemia patients. Cancer Chemother Pharmacol 89, 393–400 (2022). https://doi.org/10.1007/s00280-022-04405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-022-04405-7

Keywords

Navigation