Skip to main content

Advertisement

Log in

Priming with GM-CSF instead of G-CSF enhances CAG-induced apoptosis of acute monocytic leukemia cells in vitro

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

High expression of granulocyte–macrophage colony-stimulating factor (GM-CSF) receptor has been found in myelomonocytic or monocytic subtypes (M4/M5) of acute myeloid leukemia. Herein, we aimed to improve the effect of CAG [Ara-C, ACR, and G-CSF (granulocyte colony-stimulating factor)] regimen for acute monocytic leukemia by replacing G-CSF with GM-CSF. Results showed that the percentage of cells in S phase was higher with GM-CSF than with G-CSF treatment at 20 ng/mL (P < 0.05). When THP-1 and SHI-1 cells were primed with 20 ng/mL G-CSF or GM-CSF followed by Ara-C and ACR, cell proliferation rate in the CAGM (Ara-C, ACR, and GM-CSF) regimen was lower than in the CAG regimen (P < 0.05). Furthermore, CAGM regimen induced more obvious cell apoptosis than CAG regimen probably by reducing Bcl-2/Bax ratio (P < 0.05). Similar results were seen in primary cells from M5 patients. Collectively, our study suggests that priming with GM-CSF may be more effective than G-CSF in CAG regimen in acute monocytic leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tafuri A, Andreeff M (1990) Kinetic rationale for cytokine-induced recruitment of myeloblastic leukemia followed by cycle-specific chemotherapy in vitro. Leukemia 4:826–834. http://www.ncbi.nlm.nih.gov/pubmed/2243506

  2. te Boekhorst PA et al (1993) Enhanced chemosensitivity of clonogenic blasts from patients with acute myeloid leukemia by G-CSF, IL-3 or GM-CSF stimulation. Leukemia 7:1191–1198. http://www.ncbi.nlm.nih.gov/pubmed/7688839

  3. Saito K et al (2000) Low-dose cytarabine and aclarubicin in combination with granulocyte colony-stimulating factor (CAG regimen) for previously treated patients with relapsed or primary resistant acute myelogenous leukemia (AML) and previously untreated elderly patients with AML, secondary AML, and refractory anemia with excess blasts in transformation. Int J Hematol 71:238–244. http://www.ncbi.nlm.nih.gov/pubmed/10846828

  4. Li X et al (2015) Efficacy of cytarabine, aclarubicin and granulocyte colony-stimulating factor (CAG) regimen compared to FLAG regimen for adult patients with relapsed/refractory Philadelphia chromosome-negative acute lymphoblastic leukemia. Leuk Res. https://doi.org/10.1016/j.leukres.2015.08.013

    Article  PubMed  Google Scholar 

  5. Ornstein MC et al (2015) More is better: Combination therapies for myelodysplastic syndromes. Best Practice Res Clin Haematol 28:22–31. https://doi.org/10.1016/j.beha.2014.11.002

    Article  CAS  Google Scholar 

  6. Bai A et al (1999) Priming with G-CSF effectively enhances low-dose Ara-C-induced in vivo apoptosis in myeloid leukemia cells. Exp Hematol 27:259–265. https://doi.org/10.1016/S0301-472X(98)00041-1

  7. Dartsch DC et al (2002) Comparison of anthracycline-induced death of human leukemia cells: programmed cell death versus necrosis. Apoptosis 7:537–548. https://doi.org/10.1023/A:1020647211557

  8. Graf M et al (2004) Expression and prognostic value of hemopoietic cytokine receptors in acute myeloid leukemia (AML): implications for future therapeutical strategies. Eur J Haematol 72:89–106. https://doi.org/10.1046/j.0902-4441.2003.00184.x

    Article  CAS  PubMed  Google Scholar 

  9. Schmetzer HM et al (1999) GM-CSF stimulates proliferation of clonal leukemic bone marrow cells in acute myeloid leukemia (AML) in vitro. Ann Hematol 78:449–455. https://doi.org/10.1007/s002770050597

  10. Faderl S et al (2003) Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces antiapoptotic and proapoptotic signals in acute myeloid leukemia. Blood 102:630–637. https://doi.org/10.1182/blood-2002-06-1890

    Article  CAS  PubMed  Google Scholar 

  11. Reuter C et al (1997) Differential effect of GM-CSF pretreatment on intracellular Ara-C metabolism in normal bone marrow mononuclear cells vs acute myeloid leukemia (AML) blasts. Leukemia 11:561–571. https://doi.org/10.1038/sj.leu.2400613

  12. Thomas X et al (2010) Which AML subsets benefit from leukemic cell priming during chemotherapy? Long-term analysis of the ALFA-9802 GM-CSF study. Cancer 116:1725–1732. https://doi.org/10.1002/cncr.24943

    Article  CAS  PubMed  Google Scholar 

  13. Thomas X et al (2007) Effect of priming with granulocyte-macrophage colony-stimulating factor in younger adults with newly diagnosed acute myeloid leukemia: a trial by the Acute Leukemia French Association (ALFA) Group. Leukemia 21:453–461. https://doi.org/10.1038/sj.leu.2404521

    Article  CAS  PubMed  Google Scholar 

  14. Yang H et al (2017) The incidence and distribution characteristics of MLL rearrangements in Chinese acute myeloid leukemia patients by multiplex nested RT-PCR. Technol Health Care 25:S259–S265. https://doi.org/10.3233/Thc-171329

    Article  Google Scholar 

  15. Sironi S et al (2015) Microenvironmental hypoxia regulates FLT3 expression and biology in AML. Sci Rep 5:17550. https://doi.org/10.1038/srep17550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakase K et al (2015) Prognostic relevance of cytokine receptor expression in acute myeloid leukemia: interleukin-2 receptor alpha-chain (CD25) expression predicts a poor prognosis. PLoS One 10:e0128998. https://doi.org/10.1371/journal.pone.0128998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bennett JM et al (1985) Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 103:620–625. https://doi.org/10.7326/0003-4819-103-4-620

  18. Vardiman JW et al (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951. https://doi.org/10.1182/blood-2009-03-209262

    Article  CAS  PubMed  Google Scholar 

  19. Arber DA et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405. https://doi.org/10.1182/blood-2016-03-643544

    Article  CAS  PubMed  Google Scholar 

  20. Zhu HH et al (2013) Cytarabine, aclarubicin and granulocyte colony-stimulating factor regimen represents an effective and safe salvage regimen for patients with acute myeloid leukemia refractory to first course of induction chemotherapy. Leuk Lymphoma 54:2452–2457. https://doi.org/10.3109/10428194.2013.776679

    Article  CAS  PubMed  Google Scholar 

  21. Moon HW et al (2006) Therapeutic use of granulocyte-colony stimulating factor could conceal residual malignant cells in patients with AML1/ETO+ acute myelogenous leukemia. Leukemia 20:1408–1413. https://doi.org/10.1038/sj.leu.2404286

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y et al (2011) Salvage chemotherapy with low-dose cytarabine and aclarubicin in combination with granulocyte colony-stimulating factor priming in patients with refractory or relapsed acute myeloid leukemia with translocation (8;21). Leuk Res 35:604–607. https://doi.org/10.1016/j.leukres.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  23. Hubeek I et al (2004) The effect of G-CSF on the in vitro cytotoxicity of cytarabine and fludarabine in the FLAG combination in pediatric acute myeloid leukemia. Int J Oncol 25:1823–1829. https://doi.org/10.3892/ijo.25.6.1823

  24. Liu L et al (2014) Increasing the dose of aclarubicin in low-dose cytarabine and aclarubicin in combination with granulocyte colony-stimulating factor (CAG regimen) can safely and effectively treat relapsed or refractory acute myeloid leukemia. Int J Hematol 99:603–608. https://doi.org/10.1007/s12185-014-1528-8

    Article  CAS  PubMed  Google Scholar 

  25. Ulukaya E et al (2011) Apoptosis: why and how does it occur in biology? Cell Biochem Funct 29:468–480. https://doi.org/10.1002/cbf.1774

    Article  CAS  Google Scholar 

  26. Kontos CK et al (2014) Apoptosis-related BCL2-family members: key players in chemotherapy. Anticancer Agents Med Chem 14:353–374. https://doi.org/10.2174/18715206113139990091

  27. Ren X et al (2013) Enhancement of baicalin by hexamethylene bisacetamide on the induction of apoptosis contributes to simultaneous activation of the intrinsic and extrinsic apoptotic pathways in human leukemia cells. Oncol Rep 30:2071–2080. https://doi.org/10.3892/or.2013.2684

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Jiangsu Provincial Special Program of Medical Science (BL2012005) and Jiangsu Province’s Key Medical Center (ZX201102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Depei Wu.

Ethics declarations

Conflict of interests

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, M., Liu, L. & Wu, D. Priming with GM-CSF instead of G-CSF enhances CAG-induced apoptosis of acute monocytic leukemia cells in vitro. Cancer Chemother Pharmacol 84, 265–273 (2019). https://doi.org/10.1007/s00280-019-03857-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-03857-8

Keywords

Navigation