Skip to main content

Advertisement

Log in

Bcl-2-mediated potentiation of neocarzinostatin-induced apoptosis: requirement for caspase-3, sulfhydryl groups, and cleavable Bcl-2

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Overexpression of antiapoptotic Bcl-2 family members is thought to contribute to chemotherapeutic resistance of neural crest tumors. Paradoxical potentiation by Bcl-2 of apoptosis induced by the antineoplastic prodrug, neocarzinostatin (NCS), has been observed in PC12 pheochromocytoma cells. Prior studies have indicated that the cleavage of Bcl-2 to its proapoptotic counterpart mediated by caspase-3 is responsible for this potentiation of apoptosis. This has led to the hypothesis that induction of caspase-3 expression in bcl-2-transfected, caspase-3-deficient MCF-7 cells, will result in Bcl-2 cleavage and Bcl-2-dependent potentiation of NCS-induced apoptosis. These studies have further led to the hypothesis that both cleavable Bcl-2 and sulfhydryl groups are required for the activity of caspase-3 in this regard. As hypothesized, co-transfection of bcl-2-transfected MCF-7 cells with a caspase-3 expression construct results in cleavage of Bcl-2 and potentiation of dose-dependent, NCS-mediated cell death. Furthermore, PC12 cells transfected with an expression construct for cleavage-resistant Bcl-2 demonstrated attenuated potentiation of apoptosis relative to their counterparts transfected with wild-type bcl-2. Finally, irreversible oxidative titration of sulfhydryl groups resulted in concentration-dependent attenuation of apoptosis in PC12 cells, along with prevention of caspase-3 activation and Bcl-2 cleavage. These results definitively demonstrate the requirement for caspase-3, cleavable Bcl-2, and available sulfhydryl groups (separate from those required for NCS activation) in potentiation of NCS-induced apoptosis by Bcl-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C et al (1993) High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81(11):3091–3096

    PubMed  CAS  Google Scholar 

  2. Dole M, Nunez G, Merchant AK, Maybaum J, Rode CK, Bloch CA et al (1994) Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res 54(12):3253–3259

    PubMed  CAS  Google Scholar 

  3. Dole MG, Jasty R, Cooper MJ, Thompson CB, Nunez G, Castle VP (1995) Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res 55(12):2576–2582

    PubMed  CAS  Google Scholar 

  4. Teixeira C, Reed JC, Pratt MA (1995) Estrogen promotes chemotherapeutic drug resistance by a mechanism involving Bcl-2 proto-oncogene expression in human breast cancer cells. Cancer Res 55(17):3902–3907

    PubMed  CAS  Google Scholar 

  5. Beham AW, McDonnell TJ (1996) Bcl-2 confers resistance to androgen deprivation in prostate carcinoma cells. Proc Amer Assoc Cancer Res 37:224

    Google Scholar 

  6. Bonetti A, Zaninelli M, Pavanel F, Sperotto L, Molino A, Pelosi G et al (1996) Bcl-2 expression is associated with resistance to chemotherapy in advanced breast cancer. Proc Amer Assoc Cancer Res 37:192

    Google Scholar 

  7. Schor NF, Tyurina YY, Fabisiak JP, Tyurin VA, Lazo JS, Kagan VE (1999) Selective oxidation and externalization of membrane phosphatidylserine: Bcl-2-induced potentiation of the final common pathway for apoptosis. Brain Res 831(1–2):125–130

    Article  PubMed  CAS  Google Scholar 

  8. Hartsell TL, Yalowich JC, Ritke MK, Martinez AJ, Schor NF (1995) Induction of apoptosis in murine and human neuroblastoma cell lines by the enediyne natural product neocarzinostatin. J Pharmacol Exp Ther 275(1):479–485

    PubMed  CAS  Google Scholar 

  9. Hartsell TL, Hinman LM, Hamann PR, Schor NF (1996) Determinants of the response of neuroblastoma cells to DNA damage: the roles of pre-treatment cell morphology and chemical nature of the damage. J Pharmacol Exp Ther 277(2):1158–1166

    PubMed  CAS  Google Scholar 

  10. Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS et al (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262(5137):1274–1247

    Article  PubMed  CAS  Google Scholar 

  11. Cortazzo M, Schor NF (1996) Potentiation of enediyne-induced apoptosis and differentiation by Bcl-2. Cancer Res 56(6):1199–1203

    PubMed  CAS  Google Scholar 

  12. Schor NF, Rudin CM, Hartman AR, Thompson CB, Tyurina YY, Kagan VE (2000) Cell line dependence of Bcl-2-induced alteration of glutathione handling. Oncogene 19(3):472–476

    Article  PubMed  CAS  Google Scholar 

  13. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A et al (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278(5345):1966–1968

    Article  PubMed  CAS  Google Scholar 

  14. Liang Y, Nylander KD, Yan C, Schor NF (2002) Role of caspase 3-dependent Bcl-2 cleavage in potentiation of apoptosis by Bcl-2. Mol Pharmacol 61(1):142–149

    Article  PubMed  Google Scholar 

  15. Beerman TA, Poon R, Goldberg IH (1977) Single-strand nicking of DNA in vitro by neocarzinostatin and its possible relationship to the mechanism of drug action. Biochim Biophys Acta 475(2):294–306

    PubMed  CAS  Google Scholar 

  16. DeGraff WG, Mitchell JB (1985) Glutathione dependence of neocarzinostatin cytotoxicity and mutagenicity in Chinese hamster V-79 cells. Cancer Res 45(10):4760–4762

    PubMed  CAS  Google Scholar 

  17. Schor NF (1992) Targeted enhancement of the biological activity of the antineoplastic agent, neocarzinostatin. Studies in murine neuroblastoma cells. J Clin Invest 89(3):774–781

    Article  PubMed  CAS  Google Scholar 

  18. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA et al (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74(4):597–608

    Article  PubMed  CAS  Google Scholar 

  19. Kagan VE, Kuzmenko AI, Tyurina YY, Shvedova AA, Matsura T, Yalowich JC (2001) Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: role of myeloperoxidase. Cancer Res 61(21):7777–7784

    PubMed  CAS  Google Scholar 

  20. Lecoeur H, Gougeon ML (1996) Comparative analysis of flow cytometric methods for apoptosis quantitation in murine thymocytes and human peripheral lymphocytes from controls and HIV-infected persons evidence for interference by granulocytes and erythrocytes. J Immunol Meth 198(1):87–99

    Article  CAS  Google Scholar 

  21. Kirsch DG, Doseff A, Chau BN, Lim D-S, de Souza-Pinto NC, Hansford R, Kastan MB, Lazebnik Y, Hardwick JM (1999) Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem 274(30):21155–21161

    Article  PubMed  CAS  Google Scholar 

  22. McKelvey EM, Murphy W, Zander A, Bodey GP (1981) Neocarzinostatin: report of a phase II clinical trial. Cancer Treat Rep 65(7–8):699–701

    PubMed  CAS  Google Scholar 

  23. Natale RB, Yagoda A, Watson RC, Stover DE (1980) Phase II trial of neocarzinostatin in patients with bladder and prostatic cancer: toxicity of a five-day iv bolus schedule. Cancer 45(11):2836–2842

    Article  PubMed  CAS  Google Scholar 

  24. Liang Y, Yan C, Schor NF (2001) Apoptosis in the absence of caspase 3. Oncogene 20(45):6570–6578

    Article  PubMed  CAS  Google Scholar 

  25. Liang Y, Yan C, Nylander KD, Schor NF (2003) Early events in Bcl-2-enhanced apoptosis. Apoptosis 8(6):609–616

    Article  PubMed  CAS  Google Scholar 

  26. Papaconstantinou HT, Xie C, Zhang W, Ansari NH, Hellmich MR, Townsend CM Jr et al (2001) The role of caspases in methotrexate-induced gastrointestinal toxicity. Surgery 130(5):859–865

    Article  PubMed  CAS  Google Scholar 

  27. Fulda S, Susin SA, Kroemer G, Debatin KM (1998) Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Cancer Res 58(19):4453–4460

    PubMed  CAS  Google Scholar 

  28. Beltinger C, Fulda S, Kammertoens T, Meyer E, Uckert W, Debatin KM (1999) Herpes simplex virus thymidine kinase/ganciclovir-induced apoptosis involves ligand-independent death receptor aggregation and activation of caspases. Proc Natl Acad Sci USA 96(15):8699–8704

    Article  PubMed  CAS  Google Scholar 

  29. Ofir R, Seidman R, Rabinski T, Krup M, Yavelsky V, Weinstein Y et al (2002) Taxol-induced apoptosis in human SKOV3 ovarian and MCF7 breast carcinoma cells is caspase-3 and caspase-9 independent. Cell Death Differ 9(6):636–642

    Article  PubMed  CAS  Google Scholar 

  30. Tomicic MT, Thust R, Kaina B (2002) Ganciclovir-induced apoptosis in HSV-1 thymidine kinase expressing cells: critical role of DNA breaks, Bcl-2 decline and caspase-9 activation. Oncogene 21(14):2141–2153

    Article  PubMed  CAS  Google Scholar 

  31. Yuan SY, Hsu SL, Tsai KJ, Yang CR (2002) Involvement of mitochondrial pathway in Taxol-induced apoptosis of human T24 bladder cancer cells. Urol Res 30(5):282–288

    Article  PubMed  CAS  Google Scholar 

  32. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L et al (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281(5383):1674–1677

    Article  PubMed  CAS  Google Scholar 

  33. Banuelos A, Reyes E, Ocadiz R, Alvarez E, Moreno M, Monroy A et al (2003) Neocarzinostatin induces an effective p53-dependent response in human papillomavirus-positive cervical cancer cells. J Pharmacol Exp Ther 306(2):671–680

    Article  PubMed  CAS  Google Scholar 

  34. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13(15):1899–1911

    PubMed  CAS  Google Scholar 

  35. Baker A, Santos BD, Powis G (2000) Redox control of caspase-3 activity by thioredoxin and other reduced proteins. Biochem Biophys Res Commun 268(1):78–81

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Carmel Portugal and Karen D. Nylander for expert technical assistance in the performance of the studies described. They also thank Dr. Guodong Cao for his help in making the caspase-3 expression plasmid. These studies were supported by a grant from the National Institutes of Health (R01-CA74289) and the Carol Ann Craumer Endowment Fund of the Children’s Hospital of Pittsburgh Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Felice Schor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mi, Z., Hong, B., Mirnics, Z.K. et al. Bcl-2-mediated potentiation of neocarzinostatin-induced apoptosis: requirement for caspase-3, sulfhydryl groups, and cleavable Bcl-2. Cancer Chemother Pharmacol 57, 357–367 (2006). https://doi.org/10.1007/s00280-005-0054-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-005-0054-z

Keywords

Navigation