Skip to main content
Log in

Associations of complementation group, ALDH2 genotype, and clonal abnormalities with hematological outcome in Japanese patients with Fanconi anemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Fanconi anemia (FA) is a genetically and clinically heterogeneous disorder that predisposes patients to bone marrow failure (BMF), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). To study which genetic and phenotypic factors predict clinical outcomes for Japanese FA patients, we examined the FA genes, bone marrow karyotype, and aldehyde dehydrogenase-2 (ALDH2) genotype; variants of which are associated with accelerated progression of BMF in FA. In 88 patients, we found morphologic MDS/AML in 33 patients, including refractory cytopenia in 16, refractory anemia with excess blasts (RAEB) in 7, and AML in 10. The major mutated FA genes observed in this study were FANCA (n = 52) and FANCG (n = 23). The distribution of the ALDH2 variant alleles did not differ significantly between patients with mutations in FANCA and FANCG. However, patients with FANCG mutations had inferior BMF-free survival and received hematopoietic stem cell transplantation (HSCT) at a younger age than those with FANCA mutations. In FANCA, patients with the c.2546delC mutation (n = 24) related to poorer MDS/AML-free survival and a younger age at HSCT than those without this mutation. All patients with RAEB/AML had an abnormal karyotype and poorer prognosis after HSCT; specifically, the presence of a structurally complex karyotype with a monosomy (n = 6) was associated with dismal prognosis. In conclusion, the best practice for a clinician may be to integrate the morphological, cytogenetic, and genetic data to optimize HSCT timing in Japanese FA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kutler DI, Singh B, Satagopan J, Batish SD, Berwick M, Giampietro PF, Hanenberg H, Auerbach AD (2003) A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 101:1249–1256. https://doi.org/10.1182/blood-2002-07-2170

    Article  CAS  PubMed  Google Scholar 

  2. Knies K, Inano S, Ramírez MJ, Ishiai M, Surrallés J, Takata M, Schindler D (2017) Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia. J Clin Invest 127:3013–3027. https://doi.org/10.1172/JCI92069

    Article  PubMed  PubMed Central  Google Scholar 

  3. Faivre L, Guardiola P, Lewis C et al (2000) Association of complementation group and mutation type with clinical outcome in Fanconi anemia. Blood 96:4064–4070

    CAS  PubMed  Google Scholar 

  4. Mehta PA, Harris RE, Davies SM et al (2010) Numerical chromosomal changes and risk of development of myelodysplastic syndrome—acute myeloid leukemia in patients with Fanconi anemia. Cancer Genet Cytogenet 203:180–186. https://doi.org/10.1016/j.cancergencyto.2010.07.127

    Article  CAS  PubMed  Google Scholar 

  5. Tonnies H, Huber S, Kuhl JS, Gerlach A, Ebell W, Neitzel H (2003) Clonal chromosomal aberrations in bone marrow cells of Fanconi anemia patients: gains of chromosomal segment 3q26q29 as an adverse risk factor. Blood 101:3872–3874. https://doi.org/10.1182/blood-2002-10-3243

    Article  CAS  PubMed  Google Scholar 

  6. Quentim S, Cuccuini W, Ceccldi R et al (2011) Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood 117:e161–e170. https://doi.org/10.1182/blood-2010-09-308726

    Article  CAS  Google Scholar 

  7. Hira A, Yabe H, Yoshida K et al (2013) Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients. Blood 122:3206–3209. https://doi.org/10.1182/blood-2013-06-507962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yabe M, Yabe H, Morimoto T et al (2016) The phenotype and clinical course of Japanese Fanconi anemia infants is influenced by patient, but not maternal ALDH2 genotype. Br J Haematol 175:457–461. https://doi.org/10.1111/bjh.14243

    Article  CAS  PubMed  Google Scholar 

  9. Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D (2014) Targeting aldehyde dehaydrogenase 2: new therapeutic opportunities. Physiol Rev 94:1–34. https://doi.org/10.1152/physrev.00017.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Latour RP, Soulier J (2016) How I treat MDS and AML in Fanconi anemia. Blood 127:2971–2979. https://doi.org/10.1182/blood-2016-01-583625

    Article  CAS  Google Scholar 

  11. Muramatsu H, Okuno Y, Yoshida K et al (2017) Clinical utility of next-generation sequencing for inherited bone marrow failure syndromes. Genet Med 19:796–802. https://doi.org/10.1038/gim.2016.197

    Article  CAS  PubMed  Google Scholar 

  12. Matsuo K, Wakai K, Hirose K, Ito H, Saito T, Tajima K (2006) Alcohol dehydrogenase 2 His47Arg polymorphism influences drinking habit independently of aldehyde dehydrogenase 2 Glu487Lys polymorphism: analysis of 2,299 Japanese subjects. Cancer Epidemiol Biomark Prev 15:1009–1013. https://doi.org/10.1158/1055-9965.EPI-05-0911

    Article  CAS  Google Scholar 

  13. Butturini A, Gale RP, Verlander PC, Adler-Brecher B, Gillio AP, Auerbach AD (1994) Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood 84:1650–1655

    CAS  PubMed  Google Scholar 

  14. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951. https://doi.org/10.1182/blood-2009-03-209262

    Article  CAS  PubMed  Google Scholar 

  15. Breems DA, Van Putten WL, De Greef GE et al (2008) Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol 26:4791–4797. https://doi.org/10.1200/JCO.2008.16.0259

    Article  PubMed  Google Scholar 

  16. Göhring G, Michalova K, Beverloo HB et al (2010) Complex karyotype newly defined: the strongest prognostic factor in advanced childhood myelodysplastic syndrome. Blood 116:3766–3769. https://doi.org/10.1182/blood-2010-04-280313

    Article  CAS  PubMed  Google Scholar 

  17. Svahn J, Bagnasco F, Cappelli E, Onofrillo D, Caruso S, Corsolini F, de Rocco D, Savoia A, Longoni D, Pillon M, Marra N, Ramenghi U, Farruggia P, Locasciulli A, Addari C, Cerri C, Mastrodicasa E, Casazza G, Verzegnassi F, Riccardi F, Haupt R, Barone A, Cesaro S, Cugno C, Dufour C (2016) Somatic, hematologic phenotype, long-term outcome, and effect of hematopoietic stem cell transplantation. An analysis of 97 Fanconi anemia patients from the Italian national database on behalf of the marrow failure study group of the AIEOP (Italian Association of Pediatric Hematology-Oncology). Am J Hematol 91:666–671. https://doi.org/10.1002/ajh.24373

    Article  CAS  PubMed  Google Scholar 

  18. Futaki M, Yamashita T, Yagasaki H, Toda T, Yabe M, Kato S, Asano S, Nakahata T (2000) The IVS4 + 4 A to T mutation of the Fanconi anemia gene FANCC is not associated with a severe phenotype in Japanese patients. Blood 95:1493–1498

    CAS  PubMed  Google Scholar 

  19. Huang Y, Leung JW, Lowery M et al (2014) Modularized functions of the Fanconi anemia core complex. Cell Rep 7:1849–1857. https://doi.org/10.1016/j.celrep.2014.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu B, Yan K, Li L, Lin M, Zhang S, He Q, Zheng D, Yang H, Shao G (2015) K63-linked ubiquitination of FANCG is required for its association with the Rap80-BRCA1 complex to modulate homologous recombination repair of DNA interstand crosslinks. Oncogene 34:2867–2878. https://doi.org/10.1038/onc.2014.229

    Article  CAS  PubMed  Google Scholar 

  21. Yagasaki H, Hamanoue S, Oda T, Nakahata T, Asano S, Yamashita (2004) Identification and characterization of novel mutations of major Fanconi anemia gene FANCA in Japanese population. Hum Mutat 24:481–490. https://doi.org/10.1002/humu.20099

    Article  CAS  PubMed  Google Scholar 

  22. Alter BP, Caruso JP, Drachtman RA, Uchida T, Velagaleti GV, Elghetany MT (2000) Fanconi anemia: myelodysplasia as a predictor of outcome. Cancer Genet Cytogenet 117:125–131. https://doi.org/10.1016/S0165-4608(99)00159-4

    Article  CAS  PubMed  Google Scholar 

  23. Ayas M, Saber W, Davies SM, Harris RE, Hale GA, Socie G, LeRademacher J, Thakar M, Deeg HJJ, al-Seraihy A, Battiwalla M, Camitta BM, Olsson R, Bajwa RS, Bonfim CM, Pasquini R, MacMillan ML, George B, Copelan EA, Wirk B, al Jefri A, Fasth AL, Guinan EC, Horn BN, Lewis VA, Slavin S, Stepensky P, Bierings M, Gale RP (2013) Allogeneic hematopoietic cell transplantation for Fanconi anemia in patients with pretransplantation cytogenetic abnormalities, myelodysplastic syndrome, or acute leukemia. J Clin Oncol 31:1669–1676. https://doi.org/10.1200/JCO.2012.45.9719

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mitchell R, Wagner JE, Hirsch B, DeFor TE, Zierhut H, MacMillan ML (2014) Haematopoietic cell transplantation for acute leukaemia and advanced myelodysplastic syndrome in Fanconi anaemia. Br J Haematol 164:384–395. https://doi.org/10.1111/bjh.12634

    Article  CAS  PubMed  Google Scholar 

  25. de Latour RP, Porcher R, Dalle JH, FA Committee of the Severe Aplastic Anemia Working Party; Pediatric Working Party of the European Group for Blood and Marrow Transplantation et al (2013) Allogeneic hematopoietic stem cell transplantation in Fanconi anemia: the European Group for Blood and Marrow Transplantation experience. Blood 122:4279–4286. https://doi.org/10.1182/blood-2013-01-479733

    Article  CAS  Google Scholar 

  26. Yoshimi A, Niemeyer C, Baumann I, Schwarz-Furlan S, Schindler D, Ebell W, Strahm B (2013) High incidence of Fanconi anaemia in patients with a morphological picture consistent with refractory cytopenia of childhood. Br J Haematol 160:109–111. https://doi.org/10.1111/bjh.12083

    Article  PubMed  Google Scholar 

  27. Göhring G, Karow A, Steinemann D, Wilkens L, Lichter P, Zeidler C, Niemeyer C, Welte K, Schlegelberger B (2007) Chromosomal aberrations in congenital bone marrow failure disorders—an early indicator for leukemogenesis? Ann Hematol 86:733–739. https://doi.org/10.1007/s00277-007-0337-z

    Article  PubMed  Google Scholar 

  28. Rochowski A, Olson SB, Alonzo TA, Gerbing RB, Lange BL, Alter BP (2012) Patients with Fanconi anemia and AML have different cytogenetic clones than de novo cases of AML. Pediatr Blood Cancer 59:922–924. https://doi.org/10.1002/pbc.24168

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cioc AM, Wagner JE, ManMillan ML, DeFor T, Hirsch B (2010) Diagnosis of myelodysplastic syndrome among a cohort of 119 patients with Fanconi anemia: morphologic and cytogenetic characteristics. Am J Clin Pathol 133:92–100. https://doi.org/10.1309/AJCP7W9VMJENZOVG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deeg HJ, Scott BL, Fang M, Shulman HM, Gyurkocza B, Myerson D, Pagel JM, Platzbecker U, Ramakrishnan A, Radich JP, Sandmaier BM, Sorror M, Stirewalt DL, Wilson WA, Storb R, Appelbaum FR, Gooley T (2012) Five-group cytogenetic risk classification, monosomal karyotype, and outcome after hematopoietic cell transplantation for MDS or acute leukemia evolving from MDS. Blood 120:1398–1408. https://doi.org/10.1182/blood-2012-04-423046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Medeiros BC, Othus M, Fang M, Roulston D, Appelbaum FR (2010) Prognostic impact of monosomal karyotype in young adult and elderly acute myeloid leukemia: the southwest oncology group (SWOG) experience. Blood 116:2224–2228. https://doi.org/10.1182/blood-2010-02-270330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the patients and family members who made this work possible. We also thank all of the clinicians who provided precise data and the Support Center for Medical Research and Education, Tokai University.

Funding

This work was supported by Research Grants for Intractable Diseases from the Japanese Ministry of Health, Labor, and Welfare to E.I., S.K. and M.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miharu Yabe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Research Ethics Committees of Tokai University and Kyoto University, and all procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 796 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yabe, M., Koike, T., Ohtsubo, K. et al. Associations of complementation group, ALDH2 genotype, and clonal abnormalities with hematological outcome in Japanese patients with Fanconi anemia. Ann Hematol 98, 271–280 (2019). https://doi.org/10.1007/s00277-018-3517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-018-3517-0

Keywords

Navigation