Skip to main content
Log in

Relationship between the 46/1 haplotype of the JAK2 gene and the JAK2 mutational status and allele burden, the initial findings, and the survival of patients with myelofibrosis

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

An association has been reported between a specific haplotype of the JAK2 gene, the homozygous 46/1 haplotype, and a predisposition to the development of chromosome Philadelphia-negative myeloproliferative neoplasms. Concerning myelofibrosis (MF), controversy remains on the relationship between the above JAK2 haplotype and the patients’ clinicohematological features and survival. Among 132 patients with MF (60 % primary MF, 20 % postpolycythemia vera MF, 20 % post-essential thrombocythemia MF; 59 % JAK2V617F positive) who were analyzed for the JAK2 46/1 haplotype, 29 were found to be homozygous and 53 heterozygous. The homozygous 46/1 haplotype was more often observed in JAK2V617F-positive patients (29.5 versus 11 %, p = 0.012). Moreover, among JAK2V617F-positive patients, those who were homozygous for the 46/1 haplotype had a higher allele burden than the remainder (92 versus 48 %, p = 0.0017). Overall, patients with homozygous 46/1 haplotype showed significantly higher hemoglobin values and higher leukocyte counts, but no association was seen with other clinicohematological features. Finally, no relationship was observed between the JAK2 46/1 haplotype and either the patients’ prognostic score or survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dameshek W (1951) Some speculations on the myeloproliferative syndromes. Blood 6:372–375

    PubMed  CAS  Google Scholar 

  2. James C, Ugo V, Le Couédic JP et al (2005) A unique clonal JAK2 mutation leading to constitutive signaling causes polycythemia vera. Nature 434:1144–1148

    Article  PubMed  CAS  Google Scholar 

  3. Kralovics R, Passamonti F, Buser AS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790

    Article  PubMed  CAS  Google Scholar 

  4. Levine RL, Wadleigh M, Cools J et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397

    Article  PubMed  CAS  Google Scholar 

  5. Baxter EJ, Scott LM, Campbell PJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061

    Article  PubMed  CAS  Google Scholar 

  6. Jones AV, Chase A, Silver RT et al (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferrative neoplasms. Nat Genet 41:446–449

    Article  PubMed  CAS  Google Scholar 

  7. Olcaydu D, Harutyunyan A, Jäger R et al (2009) A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 41:450–454

    Article  PubMed  CAS  Google Scholar 

  8. Kilpivaara O, Mukherjee S, Schram AM et al (2009) A germline JAK2 SNP is associated with predisposition to the development of JAK2 (V617F)-positive myeloproliferative neoplasms. Nat Genet 41:455–459

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Tefferi A, Lasho TL, Patnaik MM et al (2010) JAK2 germline genetic variation affects disease susceptibility in primary myelofibrosis regardless of V617F mutational status: nullizygosity for the JAK2 46/1 haplotype is associated with inferior survival. Leukemia 24:105–109

    Article  PubMed  CAS  Google Scholar 

  10. Wang J, Xu Z, Liu L et al (2013) JAK2V617F allele burden, JAK2 46/1 haplotype and clinical features of Chinese with myeloproliferative neoplasms. Leukemia 27:1763–1767

    Article  PubMed  CAS  Google Scholar 

  11. Guglielmelli P, Biamonte F, Spolverini A et al (2010) Frequency and clinical correlates of JAK2 46/1 (GGCC) haplotype in primary myelofibrosis. Leukemia 24:1533–1537

    Article  PubMed  CAS  Google Scholar 

  12. Tefferi A, Thiele J, Orazi A et al (2007) Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: Recommendations from an ad hoc international expert panel. Blood 110:1092–1097

    Article  PubMed  CAS  Google Scholar 

  13. Thiele J, Kvasnicka HM, Boeltken B, Zankovich R, Diehl V, Fischer R (1999) Initial (prefibrotic) stages of idiopathic (primary) myelofibrosis (IMF)—a clinicopathological study. Leukemia 13:1741–1748

    Article  PubMed  CAS  Google Scholar 

  14. Wilkins BS, Erber WN, Bareford D et al (2008) Bone marrow pathology in essential thrombocythemia: interobserver reliability and utility for identifying disease subtypes. Blood 111:60–70

    Article  PubMed  CAS  Google Scholar 

  15. Barosi G, Mesa RA, Thiele J et al (2008) Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia 22:438–439

    Article  CAS  Google Scholar 

  16. Cervantes F, Dupriez B, Pereira A et al (2009) A new prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 113:2895–3001

    Article  PubMed  CAS  Google Scholar 

  17. Wernig G, Mercher T, Okabe R et al (2006) Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107:4274–4281

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Kralovics R, Stockton DW, Prchal JT (2003) Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood 102:3793–3796

    Article  PubMed  CAS  Google Scholar 

  19. Bellanné-Chantelot Chaumarel I, Labopin M et al (2006) Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood 108:346–352

    Article  CAS  Google Scholar 

  20. Campbell PJ (2009) Somatic and germline genetics at the JAK2 locus. Nat Genet 41:385–386

    Article  PubMed  CAS  Google Scholar 

  21. Olcaydu D, Skoda RC, Looser R et al (2009) The ‘GGCC’ haplotype of JAK2 confers susceptibility to JAK2 exon 12 mutation-positive polycythemia vera. Leukemia 23:1924–1926

    Article  PubMed  CAS  Google Scholar 

  22. Pardanani A, Lasho TL, Finke CM et al (2010) The JAK2 46/1 haplotype confers susceptibility to essential thrombocythemia regardless of JAK2V617F mutational status—clinical correlates in a study of 226 consecutive patients. Leukemia 24:110–114

    Article  PubMed  CAS  Google Scholar 

  23. Jones AV, Campbell PJ, Beer PA et al (2010) The JAK2 46/1 haplotype predisposes to MPL-mutated myeloproliferative neoplasms. Blood 115:4517–4523

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Patnaik MM, Lasho TL, Finke CM et al (2010) MPL mutation effect on JAK2 46/1 haplotype frequency in JAK2V617F-negative myeloproliferative neoplasms. Leukemia 24:859–860

    Article  PubMed  CAS  Google Scholar 

  25. Cervantes F, Dupriez B, Passamonti F et al (2012) Improving survival trends in primary myelofibrosis: an international study. J Clin Oncol 30:2981–2987

    Article  PubMed  Google Scholar 

  26. Passamonti F, Cervantes F, Vannucchi A et al (2010) A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the International Working Group for Myeloproliferative Neoplasms Research and Treatment. Blood 115:1703–1708

    Article  PubMed  CAS  Google Scholar 

  27. Gangat N, Pardanani A, Hanson CA et al (2011) DIPSS-Plus: a refined dynamic international prognostic scoring system (DIPSS) for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count and transfusion status. J Clin Oncol 29:392–397

    Article  PubMed  Google Scholar 

  28. Vannucchi AM, Lasho TL, Guglielmelli P et al (2013) Mutations and prognosis in primary myelofibrosis. Leukemia 27(9):1861–1869

    Article  PubMed  CAS  Google Scholar 

  29. Tefferi A, Lasho TL, Huang J et al (2008) Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival. Leukemia 22:756–761

    Article  PubMed  CAS  Google Scholar 

  30. Guglielmelli P, Barosi G, Specchia G et al (2009) Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele. Blood 114:1477–1483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by grants FIS PI10/00236 and RETICS RD12/0036/0010 and RD12/ 0036/0004 from the Instituto de Salud Carlos III, Spanish Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Cervantes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Trillos, A., Maffioli, M., Colomer, D. et al. Relationship between the 46/1 haplotype of the JAK2 gene and the JAK2 mutational status and allele burden, the initial findings, and the survival of patients with myelofibrosis. Ann Hematol 93, 797–802 (2014). https://doi.org/10.1007/s00277-013-1989-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-013-1989-5

Keywords

Navigation