Skip to main content
Log in

Axial pulmonary trunk diameter variations during the cardiac cycle

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

Previous studies have shown a correlation between axial pulmonary trunk diameter (PTD) on chest computed tomography (CT) and pulmonary artery pressure. However, it is not known whether the PTD slices measured on chest CT have been recorded during the systolic or diastolic phase. The aim of this study was to demonstrate the variations in PTD during the cardiac cycle by measuring coronary CT angiography (CCTA) images.

Methods

A retrospective analysis was made of 101 patients who underwent CCTA for coronary artery disease assessment. CCTA images were reconstructed during a full cardiac cycle and measurements were taken of the systolic and diastolic PTD and ascending aorta diameter (AAD) from the same slice by two independent observers.

Results

Inter-observer agreement was excellent (intraclass correlation coefficient = 0.99) for all CT measurements. The mean systolic PTD of all patients was 26.3 ± 3.6 mm and the mean diastolic PTD was 22.8 ± 3.2 mm (p < 0.001). The mean difference between systole and diastole was found to be 3.5 ± 1.2 mm for PTD, 1.2 ± 0.7 mm for AAD, and 0.1 ± 0.04 for the PTD/AAD ratio (p values < 0.001). There was no statistical significance of PTD variations according to gender, age, height, weight, body mass index, and body surface area.

Conclusion

When an increased PTD is detected in a chest CT compared to normal limits or a previous CT scan, this may be the result of the variation in PTD due to the cardiac cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AAD:

Ascending aorta diameter

BMI:

Body mass index

BSA:

Body surface area

CCTA:

Coronary computed tomography angiography

CT:

Computed tomography

CTPA:

Computed tomography pulmonary angiography

ECG:

Electrocardiography

HRCT:

High-resolution computed tomography

ICC:

Intraclass correlation coefficient

PH:

Pulmonary hypertension

PT:

Pulmonary trunk

PTD:

Pulmonary trunk diameter

RPA:

Right pulmonary artery

SD:

Standard deviation

References

  1. Alhamad EH, Al-Boukai AA, Al-Kassimi FA, Alfaleh HF, Alshamiri MQ, Alzeer AH, Al-Otair HA, Ibrahim GF, Shaik SA (2011) Prediction of pulmonary hypertension in patients with or without interstitial lung disease: reliability of CT findings. Radiology 260:875–883. https://doi.org/10.1148/radiol.11103532

    Article  PubMed  Google Scholar 

  2. Boerrigter B, Mauritz GJ, Marcus JT, Helderman F, Postmus PE, Westerhof N, Vonk-Noordegraaf A (2010) Progressive dilatation of the main pulmonary artery is a characteristic of pulmonary arterial hypertension and is not related to changes in pressure. Chest 138:1395–1401. https://doi.org/10.1378/chest.10-0363

    Article  PubMed  Google Scholar 

  3. Bombardini T, Gemignani V, Bianchini E, Venneri L, Petersen C, Pasanisi E, Pratali L, Alonso-Rodriguez D, Pianelli M, Faita F, Giannoni M, Arpesella G, Picano E (2008) Diastolic time—frequency relation in the stress echo lab: filling timing and flow at different heart rates. Cardiovasc Ultrasound 6:15. https://doi.org/10.1186/1476-7120-6-15

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bouchard A, Higgins CB, Byrd BF, Amparo EG, Osaki L, Axelrod R (1985) Magnetic resonance imaging in pulmonary arterial hypertension. Am J Cardiol 56:938–942. https://doi.org/10.1016/0002-9149(85)90408-4

    Article  CAS  PubMed  Google Scholar 

  5. Burman ED, Keegan J, Kilner PJ (2016) Pulmonary artery diameters, cross sectional areas and area changes measured by cine cardiovascular magnetic resonance in healthy volunteers. J Cardiovasc Magn Reson 18:12. https://doi.org/10.1186/s12968-016-0230-9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chan AL, Juarez MM, Shelton DK, MacDonald T, Li CS, Lin TC, Albertson TE (2011) Novel computed tomographic chest metrics to detect pulmonary hypertension. BMC Med Imaging 11:7. https://doi.org/10.1186/1471-2342-11-7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen X, Liu K, Wang Z, Zhu Y, Zhao Y, Kong H, Xie W, Wang H (2015) Computed tomography measurement of pulmonary artery for diagnosis of COPD and its comorbidity pulmonary hypertension. Int J COPD 10:2525–2533. https://doi.org/10.2147/COPD.S94211

    Article  Google Scholar 

  8. Corson N, Armato SG, Labby ZE, Straus C, Starkey A, Gomberg-Maitland M (2014) CT-based pulmonary artery measurements for the assessment of pulmonary hypertension. Acad Radiol 21:523–530. https://doi.org/10.1016/j.acra.2013.12.015

    Article  PubMed  PubMed Central  Google Scholar 

  9. Devaraj A, Wells AU, Meister MG, Corte TJ, Hansell DM (2008) The effect of diffuse pulmonary fibrosis on the reliability of CT signs of pulmonary hypertension. Radiology 249:1042–1049. https://doi.org/10.1148/radiol.2492080269

    Article  PubMed  Google Scholar 

  10. Du Bois D, Du Bois EF (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871. https://doi.org/10.1001/archinte.1916.00080130010002

    Article  Google Scholar 

  11. Edwards PD, Bull RK, Coulden R (1998) CT measurement of main pulmonary artery diameter. Br J Radiol 71:1018–1020. https://doi.org/10.1259/bjr.71.850.10211060

    Article  CAS  PubMed  Google Scholar 

  12. Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M (2016) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 37:67–119. https://doi.org/10.1093/eurheartj/ehv317

    Article  PubMed  Google Scholar 

  13. Habib G, Torbicki A (2010) The role of echocardiography in the diagnosis and management of patients with pulmonary hypertension. Eur Respir Rev 19:288–299. https://doi.org/10.1183/09059180.00008110

    Article  CAS  PubMed  Google Scholar 

  14. Haimovici JB, Trotman-Dickenson B, Halpern EF, Dec GW, Ginns LC, Shepard JAO, McLoud TC (1997) Relationship between pulmonary artery diameter at computed tomography and pulmonary artery pressures at right-sided heart catheterization. Acad Radiol 4:327–334. https://doi.org/10.1016/S1076-6332(97)80111-0

    Article  CAS  PubMed  Google Scholar 

  15. Hoeper MM, Lee SH, Voswinckel R, Palazzini M, Jais X, Marinelli A, Barst RJ, Ghofrani HA, Jing ZC, Opitz C, Seyfarth HJ, Halank M, McLaughlin V, Oudiz RJ, Ewert R, Wilkens H, Kluge S, Bremer HC, Baroke E, Rubin LJ (2006) Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol 48:2546–2552. https://doi.org/10.1016/j.jacc.2006.07.061

    Article  PubMed  Google Scholar 

  16. Kuriyama K, Gamsu G, Stern RG, Cann CE, Herfkens RJ, Brundage BH (1984) CT-determined pulmonary artery diameters in predicting pulmonary hypertension. Investig Radiol 19:16–22. https://doi.org/10.1097/00004424-198401000-00005

    Article  CAS  Google Scholar 

  17. Lange TJ, Dornia C, Stiefel J, Stroszczynski C, Arzt M, Pfeifer M, Hamer OW (2013) Increased pulmonary artery diameter on chest computed tomography can predict borderline pulmonary hypertension. Pulm Circ 3:363–368. https://doi.org/10.4103/2045-8932.113175

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee SH, Kim YJ, Lee HJ, Kim HY, Kang YA, Park MS, Kim YS, Kim SK, Chang J, Jung JY (2015) Comparison of CT-determined pulmonary artery diameter, aortic diameter, and their ratio in healthy and diverse clinical conditions. PLoS ONE. https://doi.org/10.1371/journal.pone.0126646

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mahammedi A, Oshmyansky A, Hassoun PM, Thiemann DR, Siegelman SS (2013) Pulmonary artery measurements in pulmonary hypertension. J Thorac Imaging 28:96–103. https://doi.org/10.1097/RTI.0b013e318271c2eb

    Article  PubMed  Google Scholar 

  20. Nevsky G, Jacobs JE, Lim RP, Donnino R, Babb JS, Srichai MB (2011) Sex-specific normalized reference values of heart and great vessel dimensions in cardiac CT angiography. Am J Roentgenol 196:788–794. https://doi.org/10.2214/AJR.10.4990

    Article  Google Scholar 

  21. Ng CS, Wells AU, Padley SPG (1999) A CT sign of chronic pulmonary arterial hypertension: the ratio of main pulmonary artery to aortic diameter. J Thorac Imaging 14:270–278. https://doi.org/10.1097/00005382-199910000-00007

    Article  CAS  PubMed  Google Scholar 

  22. O’Callaghan JP, Heitzman ER, Somogyi JW, Spirt BA (1982) CT evaluation of pulmonary artery size. J Comput Assist Tomogr 6:101–104. https://doi.org/10.1097/00004728-198202000-00017

    Article  PubMed  Google Scholar 

  23. Peña E, Dennie C, Veinot J, Muñiz SH (2012) Pulmonary hypertension: how the radiologist can help. Radiographics 32:9–32. https://doi.org/10.1148/rg.321105232

    Article  PubMed  Google Scholar 

  24. Revel MP, Faivre JB, Remy-Jardin M, Delannoy-Deken V, Duhamel A, Remy J (2009) Pulmonary hypertension: ECG-gated 64-section CT angiographic evaluation of new functional parameters as diagnostic criteria. Radiology 250:558–566. https://doi.org/10.1148/radiol.2502080315

    Article  PubMed  Google Scholar 

  25. Shen Y, Wan C, Tian P, Wu Y, Li X, Yang T, An J, Wang T, Chen L, Wen F (2014) CT-base pulmonary artery measurementin the detection of pulmonary hypertension. Medicine (Baltimore) 93:e256. https://doi.org/10.1097/MD.0000000000000256

    Article  Google Scholar 

  26. Tan RT, Kuzo R, Goodman LR, Siegel R, Haasler GB, Presberg KW (1998) Utility of CT scan evaluation for predicting pulmonary hypertension in patients with parenchymal lung disease. Chest 113:1250–1256. https://doi.org/10.1378/chest.113.5.1250

    Article  CAS  PubMed  Google Scholar 

  27. Terpenning S, Deng M, Hong-Zohlman SN, Lin CT, Kligerman SJ, Jeudy J, Ketai LH (2016) CT measurement of central pulmonary arteries to diagnose pulmonary hypertension (PHTN): More reliable than valid? Clin Imaging 40:821–827. https://doi.org/10.1016/j.clinimag.2016.02.024

    Article  PubMed  Google Scholar 

  28. Truong QA, Massaro JM, Rogers IS, Mahabadi AA, Kriegel MF, Fox CS, O’Donnell CJ, Hoffmann U (2012) Reference values for normal pulmonary artery dimensions by noncontrast cardiac computed tomography: the Framingham Heart Study. Circ Cardiovasc Imaging 5:147–154. https://doi.org/10.1161/CIRCIMAGING.111.968610

    Article  PubMed  Google Scholar 

  29. Zhu Y, Tang X, Wang Z, Wei Y, Zhu X, Liu W, Xu Y, Tang L, Shi H (2019) Pulmonary hypertension parameters assessment by electrocardiographically gated computed tomography: normal limits by age, sex, and body surface area in a Chinese population. J Thorac Imaging 34:329–337. https://doi.org/10.1097/RTI.0000000000000359

    Article  PubMed  Google Scholar 

  30. Zisman DA, Karlamangla AS, Ross DJ, Keane MP, Belperio JA, Saggar R, Lynch JP, Ardehali A, Goldin J (2007) High-resolution chest CT findings do not predict the presence of pulmonary hypertension in advanced idiopathic pulmonary fibrosis. Chest 132:773–779. https://doi.org/10.1378/chest.07-0116

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

YS: project development, data collection, and manuscript writing. SA: data collection and manuscript writing. OT: project development and data analysis. EE: data management and data analysis. OMA: project development, interpretation of data, and manuscript editing.

Corresponding author

Correspondence to Yasin Sarıkaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests in respect of the research, authorship and publication of this article.

Ethics approval

Approval was obtained from the Ethics Committee of Hacettepe University. The procedures applied in this study adhered to the tenets of the Declaration of Helsinki.

Consent to participate/Consent for publication.

Informed consent was obtained from all individual participants included in the study.

Availability of data and material

Can be provided if required.

Code availability

Can be provided if required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarıkaya, Y., Arslan, S., Taydaş, O. et al. Axial pulmonary trunk diameter variations during the cardiac cycle. Surg Radiol Anat 42, 1279–1285 (2020). https://doi.org/10.1007/s00276-020-02493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-020-02493-9

Keywords

Navigation