Skip to main content

Advertisement

Log in

Anatomical landmarks for acetabular abduction in adult hips: the teardrop vs. the inferior acetabular rim

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to compare the acetabular teardrop (the structure located inferomedially in the acetabulum, just superior to the obturator foramen. The medial lip is the interior, and the lateral lip is the exterior of the acetabular wall) with the inferior acetabular rim as anatomical landmarks to measure the acetabular abduction angle (AAD) using coronal CT images from different levels.

Methods

Our retrospective study included 120 pelvic CT scans from patients with non-orthopedic pathologies or stress fractures of the proximal femur. The patients included 60 females with a mean age of 48 years (range 40–66) and 60 males with a mean age of 46 years (range 38–65). Each AAD was measured using coronal plane CT slices from five levels: AAD (+ 10) (10 mm anterior to the femoral head center), AAD (+ 5) (5 mm anterior to the femoral head center), AAD (0) (through the femoral head center), AAD (− 5) (5 mm posterior to the femoral head center), and AAD (− 10) (10 mm posterior to the femoral head center). The measurements were then divided into two groups: teardrop-based AADs [AAD (+ 10), AAD (+ 5), and AAD (0)] and rim-based AADs [AAD (− 5) and AAD (− 10)].

Results

There were no mean significant differences in AAD within the groups, whereas the difference between the groups was significant. The mean teardrop-based AAD was quite significantly different from the mean rim-based AAD due to the use of different anatomical landmarks. Teardrop-based AADs are lower than rim-based AADs, leading to measurement differences of more than 10°.

Conclusions

AAD measurements considering the inferior acetabular rim can be more accurate than those considering the acetabular teardrop because the inferior rim represents the nearly hemispheric acetabulum better than does the teardrop. It is recommended to differentiate between the teardrop and the inferior acetabular rim when measuring AAD to avoid confusion regarding acetabular abduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anda S, Svenningsen S, Grontvedt T, Benum P (1990) Pelvic inclination and spatial orientation of the acetabulum. A radiographic, computed tomographic and clinical investigation. Acta Radiol 31:389–394

    Article  CAS  Google Scholar 

  2. Anda S, Terjesen T, Kvistad KA (1991) Computed tomography measurements of the acetabulum in adult dysplastic hips: which level is appropriate? Skeletal Radiol 20:267–271

    Article  CAS  Google Scholar 

  3. Anda S, Terjesen T, Kvistad KA, Svenningsen S (1991) Acetabular angles and femoral anteversion in dysplastic hips in adults: CT investigation. J Comput Assist Tomogr 15:115–120

    Article  CAS  Google Scholar 

  4. Clohisy JC, Carlisle JC, Trousdale R, Kim YJ, Beaule PE, Morgan P, Steger-May K, Schoenecker PL, Millis M (2009) Radiographic evaluation of the hip has limited reliability. Clin Orthop Relat Res 467:666–675

    Article  Google Scholar 

  5. Hohmann E, Bryant A, Tetsworth K (2011) A comparison between imageless navigated and manual freehand technique acetabular cup placement in total hip arthroplasty. J Arthroplasty 26:1078–1082. https://doi.org/10.1016/j.arth.2010.11.009

    Article  PubMed  Google Scholar 

  6. Kalteis T, Handel M, Bathis H, Perlick L, Tingart M, Grifka J (2006) Imageless navigation for insertion of the acetabular component in total hip arthroplasty: is it as accurate as CT-based navigation? J Bone Jt Surg Br 88:163–167. https://doi.org/10.1302/0301-620x.88b2.17163

    Article  CAS  Google Scholar 

  7. Kanazawa M, Nakashima Y, Arai T, Ushijima T, Hirata M, Hara D, Iwamoto Y (2016) Quantification of pelvic tilt and rotation by width/height ratio of obturator foramina on anteroposterior radiographs. Hip Int 26:462–467. https://doi.org/10.5301/hipint.5000374

    Article  PubMed  Google Scholar 

  8. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR (1978) Dislocations after total hip-replacement arthroplasties. J Bone Jt Surg Am 60:217–220

    Article  CAS  Google Scholar 

  9. Murphy SB, Ganz R, Muller ME (1995) The prognosis in untreated dysplasia of the hip. A study of radiographic factors that predict the outcome. J Bone Jt Surg Am 77:985–989

    Article  CAS  Google Scholar 

  10. Murphy SB, Kijewski PK, Millis MB, Harless A (1990) Acetabular dysplasia in the adolescent and young adult. Clin Orthop Relat Res 1990:214–223

    Google Scholar 

  11. Murray DW (1993) The definition and measurement of acetabular orientation. J Bone Jt Surg Br 75:228–232

    Article  CAS  Google Scholar 

  12. Murtha PE, Hafez MA, Jaramaz B, DiGioia AM 3rd (2008) Variations in acetabular anatomy with reference to total hip replacement. J Bone Jt Surg Br 90:308–313

    Article  CAS  Google Scholar 

  13. Nagao Y, Aoki H, Ishii SJ, Masuda T, Beppu M (2008) Radiographic method to measure the inclination angle of the acetabulum. J Orthop Sci 13:62–71. https://doi.org/10.1007/s00776-007-1188-0

    Article  PubMed  Google Scholar 

  14. Omeroglu H, Kaya A, Guclu B (2007) Evidence-based current concepts in the radiological diagnosis and follow-up of developmental dysplasia of the hip. Acta Orthop Traumatol Turc 41(Suppl 1):14–18

    PubMed  Google Scholar 

  15. Parvizi J, Benson JR, Muir JM (2018) A new mini-navigation tool allows accurate component placement during anterior total hip arthroplasty. Med Devices (Auckl) 11:95–104. https://doi.org/10.2147/mder.S151835

    Article  Google Scholar 

  16. Reikeras O, Bjerkreim I, Kolbenstvedt A (1983) Anteversion of the acetabulum and femoral neck in normals and in patients with osteoarthritis of the hip. Acta Orthop Scand 54:18–23

    Article  CAS  Google Scholar 

  17. Siebenrock KA, Kalbermatten DF, Ganz R (2003) Effect of pelvic tilt on acetabular retroversion: a study of pelves from cadavers. Clin Orthop Relat Res 2003:241–248

    Article  Google Scholar 

  18. Stem ES, O’Connor MI, Kransdorf MJ, Crook J (2006) Computed tomography analysis of acetabular anteversion and abduction. Skeletal Radiol 35:385–389

    Article  Google Scholar 

  19. Takeda Y, Fukunishi S, Nishio S, Fujihara Y, Yoshiya S (2017) Accuracy of component orientation and leg length adjustment in total hip arthroplasty using image-free navigation. Open Orthop J 11:1432–1439. https://doi.org/10.2174/1874325001711011432

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tannast M, Murphy SB, Langlotz F, Anderson SE, Siebenrock KA (2006) Estimation of pelvic tilt on anteroposterior X-rays—a comparison of six parameters. Skeletal Radiol 35:149–155. https://doi.org/10.1007/s00256-005-0050-8

    Article  CAS  PubMed  Google Scholar 

  21. Tonnis D, Heinecke A (1999) Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Jt Surg Am 81:1747–1770

    Article  CAS  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Contributions

JP: project development, data collection, data analysis, manuscript writing. GLK: data collection, data analysis, manuscript writing. KHY: project development, data analysis.

Corresponding author

Correspondence to Jin Park.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants or animals

This article does not contain any studies with human participants or animals performed by any of authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Kim, G.L. & Yang, K.H. Anatomical landmarks for acetabular abduction in adult hips: the teardrop vs. the inferior acetabular rim. Surg Radiol Anat 41, 1505–1511 (2019). https://doi.org/10.1007/s00276-019-02329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-019-02329-1

Keywords

Navigation