Skip to main content

Advertisement

Log in

The electrical conductivity of Fe4O5, Fe5O6, and Fe7O9 up to 60 GPa

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The electrical conductivities of iron-bearing minerals are important for understanding the chemical and thermal heterogeneity of the Earth’s mantle. Recent high-pressure experiments have shown that the new iron oxide group (FeO)m(Fe2O3)n is stable under mantle conditions. Although the new iron oxides possibly play an important role in the subduction zone, the physical properties of these iron oxides are still unclear. Here, we determined the electrical conductivities of Fe4O5, Fe5O6, and Fe7O9 at pressures up to 60 GPa using diamond anvil cells. The electrical conductivities of the iron oxides generally increased with increasing pressure, and the values were comparable with previous data for Fe3O4 and FeO at high pressures. Although iron oxides with a mixed-valence state are generally highly conductive, Fe7O9 was less conductive than Fe4O5 and Fe5O6. This difference is likely due to the ordered sites and valences in the structures of Fe4O5 and Fe5O6. The results show that the new iron oxides were not metallic under the experimental conditions. The iron oxides in the subducted materials may cause anomalies in the electrical conductivity of the deep mantle along with the melt and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

taken from Morris and Williams (1997) and Ovsyannikov et al. (2016, 2020), respectively

Similar content being viewed by others

References

  • Akahama Y, Kawamura H (2004) High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J Appl Phys 96:3748–3751

    Article  Google Scholar 

  • Anzolini C, Marquardt K, Stagno V, Bindi L, Frost DJ, Pearson DG, Harris JW, Hemley RJ, Nestola F (2020) Evidence for complex iron oxides in the deep mantle from FeNi (Cu) inclusions in superdeep diamond. Proc Natl Acad Sci 117:21088–21094

    Article  Google Scholar 

  • Bindi L, Sinmyo R, Bykova E, Ovsyannikov SV, McCammon C, Kupenko I, Ismailova L, Dubrovinsky L, Xie X (2021) Discovery of elgoresyite,(Mg, Fe)5Si2O9: implications for novel iron-magnesium silicates in rocky planetary interiors. ACS Earth Space Chem 5:2124–2130

    Article  Google Scholar 

  • Blakely RJ, Brocher TM, Wells RE (2005) Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology 33:445–448

    Article  Google Scholar 

  • Boffa Ballaran T, Uenver-Thiele L, Woodland AB (2015) Complete substitution of Fe2+ by Mg in Fe4O5: The crystal structure of the Mg2Fe2O5 end-member. Am Miner 100:628–632

    Article  Google Scholar 

  • Bykova E, Dubrovinsky L, Dubrovinskaia N, Bykov M, McCammon C, Ovsyannikov SV, Liermann H-P, Kupenko I, Chumakov AI, Rüffer R (2016) Structural complexity of simple Fe2O3 at high pressures and temperatures. Nat Commun 7:1–6

    Article  Google Scholar 

  • Chainani A, Yokoya T, Morimoto T, Takahashi T, Todo S (1995) High-resolution photoemission spectroscopy of the Verwey transition in Fe3O4. Phys Rev B 51:17976

    Article  Google Scholar 

  • Dobson DP, Brodholt JP (2005) Subducted banded iron formations as a source of ultralow-velocity zones at the core–mantle boundary. Nature 434:371–374

    Article  Google Scholar 

  • Dobson DP, Richmond NC, Brodholt JP (1997) A high-temperature electrical conduction mechanism in the lower mantle phase (Mg, Fe)1-xO. Science 275:1779–1781

    Article  Google Scholar 

  • Fei Y, Frost DJ, Mao H-K, Prewitt CT, Haeusermann D (1999) In situ structure determination of the high-pressure phase of Fe3O4. Am Miner 84:203–206

    Article  Google Scholar 

  • Frost DJ, Liebske C, Langenhorst F, McCammon CA, Trønnes RG, Rubie DC (2004) Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428:409–412

    Article  Google Scholar 

  • Hamada M, Kamada S, Ohtani E, Mitsui T, Masuda R, Sakamaki T, Suzuki N, Maeda F, Akasaka M (2016) Magnetic and spin transitions in wüstite: a synchrotron Mössbauer spectroscopic study. Phys Rev B 93:155165

    Article  Google Scholar 

  • Hikosaka K, Sinmyo R, Hirose K, Ishii T, Ohishi Y (2019) The stability of Fe5O6 and Fe4O5 at high pressure and temperature. Am Mineral J Earth Planet Mater 104:1356–1359

    Article  Google Scholar 

  • Irifune T, Shinmei T, McCammon CA, Miyajima N, Rubie DC, Frost DJ (2010) Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 327:193–195

    Article  Google Scholar 

  • Ishii T, Shi L, Huang R, Tsujino N, Druzhbin D, Myhill R, Li Y, Wang L, Yamamoto T, Miyajima N (2016) Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils. Rev Scic Instrum 87:024501

    Article  Google Scholar 

  • Ishii T, Uenver-Thiele L, Woodland AB, Alig E, Boffa Ballaran T (2018) Synthesis and crystal structure of Mg-bearing Fe9O11: new insight in the complexity of Fe-Mg oxides at conditions of the deep upper mantle. Am Mineral J Earth Planet Mater 103:1873–1876

    Google Scholar 

  • Ishii T, Liu Z, Katsura T (2019) A breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvils. Engineering 5(3):434–440

    Article  Google Scholar 

  • Kagi H, Zedgenizov DA, Ohfuji H, Ishibashi H (2016) Micro-and nano-inclusions in a superdeep diamond from São Luiz, Brazil. Geochem Int 54:834–838

    Article  Google Scholar 

  • Kaminsky FV, Ryabchikov ID, McCammon CA, Longo M, Abakumov AM, Turner S, Heidari H (2015) Oxidation potential in the Earth’s lower mantle as recorded by ferropericlase inclusions in diamond. Earth Planet Sci Lett 417:49–56

    Article  Google Scholar 

  • Kang N, Schmidt MW (2017) The melting of subducted banded iron formations. Earth Planet Sci Lett 476:165–178

    Article  Google Scholar 

  • Katsura T, Yoneda A, Yamazaki D, Yoshino T, Ito E (2010) Adiabatic temperature profile in the mantle. Phys Earth Planet Inter 183:212–218

    Article  Google Scholar 

  • Katsura T, Baba K, Yoshino T, Kogiso T (2017) Electrical conductivity of the oceanic asthenosphere and its interpretation based on laboratory measurements. Tectonophysics 717:162–181

    Article  Google Scholar 

  • Katsura T., Yoshino T. (2015) Heterogeneity of Electrical Conductivity in the Oceanic Upper Mantle. In: Khan A, Deschamps F (eds) The Earth's Heterogeneous Mantle. Springer Geophysics. Springer, Cham. 173–204

  • Kiseeva ES, Vasiukov DM, Wood BJ, McCammon C, Stachel T, Bykov M, Bykova E, Chumakov A, Cerantola V, Harris JW (2018) Oxidized iron in garnets from the mantle transition zone. Nat Geosci 11:144–147

    Article  Google Scholar 

  • Kupenko I, Aprilis G, Vasiukov D, McCammon C, Chariton S, Cerantola V, Kantor I, Chumakov A, Rüffer R, Dubrovinsky L (2019) Magnetism in cold subducting slabs at mantle transition zone depths. Nature 570:102–106

    Article  Google Scholar 

  • Lavina B, Meng Y (2015) Unraveling the complexity of iron oxides at high pressure and temperature: synthesis of Fe5O6. Sci Adv 1:e1400260

    Article  Google Scholar 

  • Lavina B, Dera P, Kim E, Meng Y, Downs RT, Weck PF, Sutton SR, Zhao Y (2011) Discovery of the recoverable high-pressure iron oxide Fe4O5. Proc Natl Acad Sci 108:17281–17285

    Article  Google Scholar 

  • McCammon CA (2005) Mantle oxidation state and oxygen fugacity: constraints on mantle chemistry, structure, and dynamics. In: van der Hilst R et al. (eds) Earth’s deep mantle: structure, composition and evolution., Geophysical Monographs, vol. 160. SerAGU, Washington DC, pp 219–240

  • Meng Y, Fei Y, Weidner D, Gwanmesia G, Hu J (1994) Hydrostatic compression of γ-Mg2SiO4 to mantle pressures and 700 K: thermal equation of state and related thermoelastic properties. Phys Chem Miner 21:407–412

    Article  Google Scholar 

  • Merlini M, Hanfland M, Salamat A, Petitgirard S, Müller H (2015) The crystal structures of Mg2Fe2C4O13, with tetrahedrally coordinated carbon, and Fe13O19, synthesized at deep mantle conditions. Am Miner 100:2001–2004

    Article  Google Scholar 

  • Morris ER, Williams Q (1997) Electrical resistivity of Fe3O4 to 48 GPa: Compression-induced changes in electron hopping at mantle pressures. J Geophys Res Solid Earth 102:18139–18148

    Article  Google Scholar 

  • Myhill R, Ojwang DO, Ziberna L, Frost DJ, Ballaran TB, Miyajima N (2016) On the P-T–fO2 stability of Fe4O5, Fe5O6 and Fe4O5-rich solid solutions. Contrib Miner Petrol 171:1–11

    Article  Google Scholar 

  • Ohta K, Hirose K, Onoda S, Shimizu K (2007) The effect of iron spin transition on electrical conductivity of (Mg, Fe) O magnesiowüstite. Proc Jpn Acad Ser B 83:97–100

    Article  Google Scholar 

  • Ohta K, Hirose K, Shimizu K, Ohishi Y (2010) High-pressure experimental evidence for metal FeO with normal NiAs-type structure. Phys Rev B 82:174120

    Article  Google Scholar 

  • Ohta K, Cohen RE, Hirose K, Haule K, Shimizu K, Ohishi Y (2012) Experimental and theoretical evidence for pressure-induced metallization in FeO with rocksalt-type structure. Phys Rev Lett 108:026403

    Article  Google Scholar 

  • Ovsyannikov SV, Bykov M, Bykova E, Kozlenko DP, Tsirlin AA, Karkin AE, Shchennikov VV, Kichanov SE, Gou H, Abakumov AM (2016) Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation. Nat Chem 8:501–508

    Article  Google Scholar 

  • Ovsyannikov SV, Bykov M, Medvedev SA, Naumov PG, Jesche A, Tsirlin AA, Bykova E, Chuvashova I, Karkin AE, Dyadkin V (2020) A room-temperature Verwey-type transition in iron oxide, Fe5O6. Angew Chem 132:5681–5685

    Article  Google Scholar 

  • Pasternak M, Rozenberg GK, Machavariani GY, Naaman O, Taylor R, Jeanloz R (1999) Breakdown of the Mott-Hubbard state in Fe2O3: a first-order insulator-metal transition with collapse of magnetism at 50 GPa. Phys Rev Lett 82:4663

    Article  Google Scholar 

  • Pasternak MP, Taylor R, Jeanloz R, Li X, Nguyen JH, McCammon CA (1997) High pressure collapse of magnetism in Fe0.94O: mössbauer spectroscopy beyond 100 GPa. Phys Rev Lett 79:5046

  • Potapkin V, McCammon C, Glazyrin K, Kantor A, Kupenko I, Prescher C, Sinmyo R, Smirnov G, Chumakov AI, Rüffer R (2013) Effect of iron oxidation state on the electrical conductivity of the Earth’s lower mantle. Nat Commun 4:1–6

    Article  Google Scholar 

  • Püthe C, Kuvshinov A (2013) Determination of the 3-D distribution of electrical conductivity in Earth’s mantle from Swarm satellite data: frequency domain approach based on inversion of induced coefficients. Earth Planets Space 65:1247–1256

    Article  Google Scholar 

  • Rohrbach A, Ballhaus C, Golla-Schindler U, Ulmer P, Kamenetsky VS, Kuzmin DV (2007) Metal saturation in the upper mantle. Nature 449:456–458

    Article  Google Scholar 

  • Senn MS, Wright JP, Attfield JP (2012) Charge order and three-site distortions in the Verwey structure of magnetite. Nature 481:173–176

    Article  Google Scholar 

  • Sinmyo R, Pesce G, Greenberg E, McCammon C, Dubrovinsky L (2014) Lower mantle electrical conductivity based on measurements of Al, Fe-bearing perovskite under lower mantle conditions. Earth Planet Sci Lett 393:165–172

    Article  Google Scholar 

  • Sinmyo R, Bykova E, Ovsyannikov SV, McCammon C, Kupenko I, Ismailova L, Dubrovinsky L (2016) Discovery of Fe7O9: a new iron oxide with a complex monoclinic structure. Sci Rep 6:1–7

    Article  Google Scholar 

  • Sinmyo R, Nakajima Y, McCammon CA, Miyajima N, Petitgirard S, Myhill R, Dubrovinsky L, Frost DJ (2019) Effect of Fe3+ on phase relations in the lower mantle: implications for redox melting in stagnant slabs. J Geophys Res Solid Earth 124:12484–12497

    Article  Google Scholar 

  • Smith EM, Shirey SB, Nestola F, Bullock ES, Wang J, Richardson SH, Wang W (2016) Large gem diamonds from metallic liquid in Earth’s deep mantle. Science 354:1403–1405

    Article  Google Scholar 

  • Stagno V, Ojwang DO, McCammon CA, Frost DJ (2013) The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493:84–88

    Article  Google Scholar 

  • Tannhauser DS (1962) Conductivity in iron oxides. J Phys Chem Solids 23:25–34

    Article  Google Scholar 

  • Tsuchiya T, Wentzcovitch RM, Da Silva CR, De Gironcoli S (2006) Spin transition in magnesiowüstite in Earth’s lower mantle. Phys Rev Letters 96:198501

    Article  Google Scholar 

  • Uenver-Thiele L, Woodland AB, Miyajima N, Ballaran TB, Frost DJ (2018) Behaviour of Fe4O5–Mg2Fe2O5 solid solutions and their relation to coexisting Mg–Fe silicates and oxide phases. Contrib Miner Petrol 173:1–16

    Article  Google Scholar 

  • Wang Y, Weidner DJ, Zhang J, Gwanrnesia GD, Liebermann RC (1998) Thermal equation of state of garnets along the pyrope-majorite join. Phys Earth Planet Inter 105:59–71

    Article  Google Scholar 

  • Wirth R, Dobrzhinetskaya L, Harte B, Schreiber A, Green H (2014) High-Fe (Mg, Fe)O inclusion in diamond apparently from the lowermost mantle. Earth Planet Sci Lett 404:365–375

    Article  Google Scholar 

  • Woodland A, Schollenbruch K, Koch M, Ballaran TB, Angel R, Frost D (2013) Fe4O5 and its solid solutions in several simple systems. Contrib Miner Petrol 166:1677–1686

    Article  Google Scholar 

  • Xu Y, McCammon C, Poe BT (1998) The effect of alumina on the electrical conductivity of silicate perovskite. Science 282:922–924

    Article  Google Scholar 

  • Yang A, Qin Q, Tao X, Zhang S, Zhao Y, Zhang P (2021) Metallic nature and site-selective magnetic moment collapse in iron oxide Fe4O5 at the extreme conditions of Earth's deep interior. Phys Lett A 127607

  • Yoshino T (2010) Laboratory electrical conductivity measurement of mantle minerals. Surv Geophys 31:163–206

    Article  Google Scholar 

  • Yoshino T, Katsura T (2009) Effect of iron content on electrical conductivity of ringwoodite, with implications for electrical structure in the transition zone. Phys Earth Planet Inter 174:3–9

    Article  Google Scholar 

  • Yoshino T, Nishi M, Matsuzaki T, Yamazaki D, Katsura T (2008) Electrical conductivity of majorite garnet and its implications for electrical structure in the mantle transition zone. Phys Earth Planet Inter 170:193–200

    Article  Google Scholar 

  • Yoshino T, Kamada S, Zhao C, Ohtani E, Hirao N (2016) Electrical conductivity model of Al-bearing bridgmanite with implications for the electrical structure of the Earth’s lower mantle. Earth Planet Sci Lett 434:208–219

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (Grant Number JP19H01989).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhou Maitani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a Topical Collection “Experimental & Analytical Techniques at Extreme & Ambient Conditions”, guest edited by Stella Chariton, Vitali B. Prakapenka and Haozhe (Arthur) Liu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 79 KB)

Supplementary file2 (PDF 138 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maitani, S., Sinmyo, R., Ishii, T. et al. The electrical conductivity of Fe4O5, Fe5O6, and Fe7O9 up to 60 GPa. Phys Chem Minerals 49, 11 (2022). https://doi.org/10.1007/s00269-022-01188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-022-01188-4

Keywords

Navigation